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Machine learning techniques are fundamental to the automation of particle identifi-
cation for ALICE. This literary review discusses the advantages that boosted machine
learning algorithms have with respect to achieving more accurate and efficient
particle identification. The review begins with an introduction to the principles of
boosting and then provides a rigorous specification of a boosting algorithm. This is
used as a framework to compare boosting with artificial neural networks - another
common machine learning technique used for particle identification - and to discuss
optimisations. We focus the optimisations section on techniques which improve
classification speeds. This is because the scheduled upgrades to ALICE are going to
increase the amount of data that needs to be classified. By the end of this review it
will be clear to the reader that boosting has many advantages, which are pertinent to
the ALICE experiment, and therefore should be considered as a part of the particle
identification framework.

Not enough is known about the very early universe. Roughly a millionth of a
second into the universe’s existence the mixture of quarks and gluons, known as
quark-gluon plasma, began to cool and form hadron particles - the fundamental
building blocks of matter [Trafton. 2010]. Naturally, the study of quark-gluon plasma
has become an imperative for physicists. However, quark-gluon plasma doesn’t occur
naturally so scientists have to make it by accelerating and colliding heavy ions - the
nuclei of heavy particles - at nearly light speed [Trafton. 2010]. These experiments
are being done at the Large Hadron Collider (LHC) in Europe and at the Relativistic
Heavy Ion Collider (RHIC) in the United States.

A Large Ion Collider Experiment (ALICE) is the dedicated heavy ion experi-
ment at the LHC. The Transition Radiation Detector (TRD) is a layer of the ALICE
detector which monitors the temporal charges of particles, emitted from heavy ion
collisions, as they pass through it [Wilk. 2010]. Amongst these particles are electrons,
negatively charged elementary particles, and pions, short-lived particles made up of
quarks and and anti-quarks. In this review we consider machine learning techniques
used to classify electrons and pions passing through the TRD. Due to scheduled
upgrades to ALICE, which will increase the number of detectable heavy ion collisions,
we emphasise techniques used to reduce the computational cost of classifications.

The use of artificial networks is the standard method for particle identification
at ALICE and has been shown to be successful [Wilk. 2010]. In this review we focus on
boosting, an ensemble algorithm, which has been successfully implemented at other
particle identification experiments such as MiniBooNE at Fermilabs [Roe et al. 2005].
Boosting has many advantages. It has a tendency to not over fit data [Freund and
Schapire. 1999], it can efficiently utilise many explanatory variables [Roe et al. 2005],
its classification is easily parallelised, and it can dynamically alter the amount of com-
putation required for classification relative to the complexity of a particular instance
[Sun and Zhou. 2013]. All of these features make it an accurate and computationally
efficient classifier. During the course of this review the advantages of boosting will
made clear.
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Boosting falls into a family of machine learning algorithms called ensemble al-
gorithms. Ensemble algorithms aim to construct a strong learner from a set of weak
learners - by compiling the weak learners’ classifications - using slightly altered
versions of the training data [Dietterich. 2000]. A weak learner only needs to be
slightly more accurate than random. This technique has been well tested and many
authors have shown its effectiveness [Dietterich. 2000] [Bauer and Kohavi. 1999].
Implementations often use decision trees or support vector machines as weak learners
but this can vary. The two main classes of ensemble algorithms are the AdaBoost
family (boosting) and bootstrap aggregation (bagging).

Both bagging and boosting alter the training data between weak learners to
emphasise certain features. This specialises the weak learners by making each
individual more responsive to different features of the training data and ultimately
improving the strong learner. Bagging achieves this by using bootstrapped samples of
the training data for each weak learner and boosting annotates the training data for
each weak learner with different weights [Dietterich. 2000].

Both bagging and boosting rely on the instability of the weak learners - in that
they exploit the variance of the weak learners resulting from the small changes in
the training data [Dietterich. 2000]. This should impact the choice of weak learner.
Boosting is often more effective than bagging. This is because boosting is less reliant
on the instability of weak learners, since it can use weights to make more emphatic
changes to the training data [Dietterich. 2000].

AdaBoost was the first implementation of boosting which dealt with the practi-
cal problems of early attempts [Freund and Schapire. 1999]. It has become the
template for the entire class of algorithms and is still a very effective [Roe et al. 2005].

The notation we use to formalise AdaBoost is going to be used throughout the
review. This specification of AdaBoost is from [Freund and Schapire. 1999]. Let’s
consider a set X where each element is classified as either −1 or 1. The task of
the machine learning algorithm is to construct a function h : X → {−1, 1} which
correctly classifies every element of X. To achieve this we have our training data
(x1, y1), (x2, y2), ..., (xn, yn) where xi ∈ X and yi ∈ {−1, 1} for all i ≤ n. We are going to
construct h from a linear combination of T functions, ht : X → {−1, 1} where t ≤ T ,
called weak learners.

Every weak learner ht has a weight wt,i associated with each training example
(xi, yi). This weight is initialized to 1

n and updated during the training process by the
following rule:

wt+1,i =

wt,i ×
{
e−αt if ht(xi) = yi
eαt if ht(xi) 6= yi

Z

Z is a normalisation factor used to ensure that
∑
wt,i remains equal to one. An

important aspect of the above formula is that wt+1,i is inversely proportional to
how accurately ht classified (xi, yi). This means that wt+1,i is larger if the previous
h1, h2, ..., ht weak learners struggled to classify xi. This technique helps specialise the
weak candidates by providing annotated training data which has had the difficult
examples emphasized with larger weights.
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We define αt, the confidence rating of ht, as:

αt =
1

2
ln(

1− εt
εt

)

εt is the error of ht and is defined as:

εt =

i≤n∑
h(xi)6=yi

wt,i

This means that the error is a measure of how accurately difficult training examples
are classified. It is also important to point out that αt and εt are inversely proportional.
Therefore, αt can be seen as a measure of how valid and novel the classification of ht
is. This leads to a natural definition of h, which is:

h(x) = sign

{
i≤T∑
i=0

αihi(x)

}

The reasons for the specific definitions of wt,i, αt and ht, apart from their proportional
relationships, are mathematical. A full explanation is beyond the scope of this paper.
The mathematics reduces many of the computationally expensive procedures such as
calculating Z.

Now that we have an idea of how boosting works let’s consider how it can be
used for particle identification. As mentioned earlier, artificial neural networks are
the standard technique for particle identification for ALICE. However, boosting has
been used for particle identification at the MiniBooNE experiment [Roe et al. 2005]
[Yang et al. 2005] [Yang et al. 2007] and therefore provides us with a good framework
to investigate how boosting may perform for ALICE. At the MiniBooNE experiment
decision trees were used as the weak learners [Yang et al. 2005]. This construction is
known as a boosted decision tree.

The tests between artificial neural networks and boosted decision trees at Mini-
BooNE were conclusive. Boosted decision trees improved performance on all tests
and in some cases it improved classification accuracy by 80 percent [Roe et al. 2005].
Boosted decision trees could have made even greater gains had the experiments not
required the artificial neural networks and boosted decision trees to use the same
number of explanatory variables. This is an issue because boosted decision trees,
unlike artificial neural networks, can efficiently utilise many explanatory variables
even if they have weak discriminant power [Roe et al. 2005]. This is not true for
artificial neural networks because many explanatory variables make it much harder
to optimise the weights [Roe et al. 2005]. Artificial neural networks performed
optimally with 30 explanatory variables while the boosted decision tree could have
performed significantly better with more explanatory variables [Roe et al. 2005]. In
the context of ALICE however, the computational requirements may restrain the
number of explanatory variables and unfortunately none of the experiments test the
performance differences between artificial neural networks and boosted decision trees
for a small number of explanatory variables.

Another advantage boosted decision trees have over artificial neural networks is
that they are more stable. To compare the stability of the two techniques experiments
were run where the training data was altered. For example the data was smeared
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using the following formula:

xi = xi × (1 + sf × r)
where sf is a smear factor which was varied between 0.01 and 0.1 and r was a random
number with Gaussian distribution [Yang et al. 2007]. Both artificial neural networks
and boosted decision trees turned out to be robust [Yang et al. 2007]. However,
boosted decision trees performed slightly better than artificial neural networks. This
difference in classification accuracy becomes clearer for larger smear factors [Yang et
al. 2007].

Boosted decision trees also require less optimisation than artificial neural net-
works because there are fewer changeable parameters [Roe et al. 2005].

Naturally the next consideration is what implementation of boosting is optimal.
Fortunately, various boosted decision tree implementations have been tested at
MiniBooNE. The practical experiments compared AdaBoost, ε-Boost ,ε-LogitBoost and
ε-HingeBoost.

The structure of ε-Boost is identical to AdaBoost but it has a different weight
update and weak learner aggregation formula.

The tests showed that ε-LogitBoost and ε-HingeBoost were inferior [Yang et al.
2005]. The major difference in performance between AdaBoost and ε-Boost, which is
worth emphasising in our context, is the fact that for small numbers of weak learners
- around 100 - AdaBoost is more accurate [Roe et al. 2005]. For 5, 000 or more weak
learners ε-Boost starts to perform better than AdaBoost [Roe et al. 2005]. It would
appear that for ALICE, where fewer weak learners would be better, AdaBoost would
outperform ε-Boost.

The results from the MiniBooNE experiment are clear. Using various different
metrics the literature has shown that boosted decision trees perform well compared
to artificial neural networks at identifying particles. However, it is important to point
out that the MiniBooNE experiment is in some respects quite different to ALICE. The
particles being identified are not pions or electrons and the receptor at MiniBooNE is
different to ALICE’s TRD layer.

For the rest of this review we look at techniques for increasing the speed of
classifications. This is generally done by trying to reduce the number of weak learners.
This technique is called pruning. Given that the upgrades to ALICE will increase the
number of particle collisions detected and that on-line classification is desired, being
able to quickly classify particles is essential.

A natural question to ask is whether all the weak learners are improving the
classification. If not, could some be pruned? In general, increasing the number of weak
learners improves classification accuracy [Roe et al. 2005] but this is in aggregate. It is
possible that cherry picking a subset of the weak learners could improve classification
accuracy and reduce classification speed. An evolutionary approach, called evolution-
ary pruning, is used to answer this question. It is based upon the assumption that
there is redundancy in weak learners resulting from dependencies[Jang and Kim.
2008].

Evolutionary pruning involves two stages. The first stage attempts to calculate
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Fig. 1. The distribution of AdaBoost weights and the results of evolutionary pruning [Jang and Kim. 2008]
.

the importance of each weak learner in the strong learner. In AdaBoost the weights
α0, α2, ..., αT are meant to be indicators of a weak learner’s importance. However,
due to AdaBoost’s structure it is unable to search the entire weight space. Greater
importance is put on weak learners in early stages, with smaller t [Jang and Kim.
2008]. Intuitively this is because they classify the ’low hanging fruit’ and leave the
more difficult classifications for weak learners at a later stage. This means that the
algorithm doesn’t return the ideal weight distribution [Jang and Kim. 2008]. The first
stage of the evolutionary pruning aims to redistribute the weights more efficiently.

The algorithm works as follows. Pick p and q which are acceptable detection and
false positive rates. Get a sequence α0, α2, ..., αT of weights from AdaBoost which
achieve p and q. Use this sequence to construct a population of chromosomes. Each
chromosome is a vector of T weights α̂0, α̂1, ..., α̂T chosen randomly with respect to the
condition that α̂i ≤ max(α0, α2, ..., αT ) for all i ≤ T . The original sequence α0, α2, ..., αT
is not part of this population because it restricts the exploration of evolution [Jang
and Kim. 2008].

The evolutionary mechanism uses a q-tournament selection method and the fol-
lowing fitness function:

Fitness =

i≤n∑
i=0

c(xi)−
{
p− p̂ if p̂ ≤ p
0 otherwise −

{
q̂ − q if q̂ ≥ q
0 otherwise

The variables p̂ and q̂ are the obtained detection and false positive rate from the
chromosome. The function c(xi) equals 1 if xi was correctly classified and 0 otherwise.
Basically the fitness is increased by 1 for every correct classification and reduced by 1
if the detection rate decreases or false positive rate increases [Jang and Kim. 2008].

The resulting weights of this evolutionary process can be seen in figure 1 which
displays the weights after the first stage of evolutionary pruning compared to the
original AdaBoost weights. Notice how the AdaBoost weights are more uniform and
in a downward pattern. The purpose of this process was to get a better indication of
which weak learners were important so that in the second stage weak learners could
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Fig. 2. A boosted strong learner represented as a tree on the left and the same tree flipped and mapped on
top of itself on the right [Sun and Zhou. 2013].

be pruned [Jang and Kim. 2008].

The second stage is an iterative process which prunes the weak learner with
smallest α̂i until the detection rate drops below p or the false positive rate exceeds q
[Jang and Kim. 2008]. This wouldn’t have worked with the original weights because
it would have an inaccurate bias towards weak learners with large t values. It would
essentially just trim the weak learners off the end.

Evolutionary pruning has two major advantages. Firstly it can reduce the num-
ber of weak learners and therefore increase classification speeds [Jang and Kim.
2008]. However, this is not guaranteed. It is possible after the first stage of re-
weighting the weak learners that none get pruned in the second stage. The second
major advantage is that the accuracy of the strong learner can be increased. Both
[Jang and Kim. 2008] and [Zhou et al. 2002] have found that evolutionary pruning
can improve accuracy.

Evolutionary pruning is useful but boosting lends itself to another kind of prun-
ing. Dynamic pruning can change the number of weak learners depending on the
complexity of the instance being classified.

For the next few paragraphs we will discuss different forms of dynamic pruning.
For simplicity let each weak learner be a pseudo binary function ht : X → {αt, βt}
and without loss of generality assume αt < βt. Given that each weak learner has two
possible values it is useful to consider the strong learner as a binary tree. Each level t
of the tree represents a weak learner ht and every node has an associated value. The
root has value 0. Every non-leaf node on level t with value v has exactly 2 children.
The left child has value v+αt and the right child has value v+βt. The tree is complete
and every possible value for h is represented by a leaf. The left tree of figure 2 is an
example of such a tree. The bold line is an example of a path an input x may take
through the graph to a leaf which has value h(x). Given this representation of a tree
one can consider that improving the classification speed of h is analogous to pruning
the tree.

FastExit is one such algorithm. It calculates if the remaining weak learners
have sufficient sway to change the sign of the boosted algorithm’s output and if not it
terminates [Kim at al. 2012]. For example, consider a strong learner h which consists
of a sequence of weak learners h1, h2, ...hT where ht : X → [αt = −1, βt = 1] for all
t ≤ T . Then, if at step t the equation |

∑i≤t
i=0 hi(x)| is greater than the threshold value
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Fig. 3. A figure showing how a tree representation of boosted strong learner, such as on the left, can be
converted to a Binary Decision Diagram, such as on the right [Sun and Zhou. 2013].

n − t the remaining n − t weak learners don’t need to be calculated. This is because
the sign of h cannot be changed. This algorithm can naturally be extended to weak
learners with non-uniform ranges by altering the equation for the threshold value. In
a binary tree representation such as 2 FastExit would return at any node whose entire
sub tree falls into exclusively R+ or R−. FastExit has two major advantages. It doesn’t
increase classification error and the threshold values for each t can be calculated once
and saved. This means that there is almost no computational cost and absolutely no
accuracy cost, so implementing it is essentially free. However, its major downfall is
that it’s relatively unintelligent and therefore can only make major reductions to the
number of weak learners executed for a very small subset of the input space.

FastExit is based upon the observation that at a certain point the remaining
weak classifiers cannot affect the overall classification. Direct Backwards Pruning
uses the additional observation that many of the possible paths in a tree are never
traversed by a training example [Zhang and Viola. 2007]. Therefore, Direct Backwards
Pruning terminates at a node if all paths in its sub tree which have been traversed by
a training example fall into exclusively R+ or R− [Zhang and Viola. 2007]. Given that
the number of training examples is generally much less than 2T - the size of the tree
- Direct Backwards Pruning can massively improve classification speeds. However,
unlike FastExit it can increase the classification error. The magnitude of this negative
effect is dependent on the training data. It won’t work if the training set is too small,
has incorrectly labelled instances or isn’t representative for some other reason. The
increase in classification speed needs to be weighed against the loss in accuracy.

Another more advanced pruning technique called a Threshold Binary Decision
Diagram uses a tree > of a strong learner to construct a Binary Decision Diagram
[Sun and Zhou. 2013]. The technique involves flipping > to a tree we shall label ⊥ and
mapping > on top of ⊥ [Sun and Zhou. 2013]. An example can be seen on the right of
figure 2. Notice that the nodes of ⊥ creates a set of intervals I on each level. If two
nodes of > fall into the same interval of I then we merge them into one node [Sun and
Zhou. 2013]. The resulting tree may have nodes whose left and right children have
become the same node. In this case the node can be removed and the resulting tree
is a binary decision diagram [Sun and Zhou. 2013]. Consider figure 3 as an example.
The original tree which had three layers of classification has been reduced to a single
weak classifier - the only node with more than one child. Using Threshold Binary
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Diagram will always prune more nodes than FastExit and one would expect less than
Direct Backwards Pruning.

In the previous section we considered the techniques for reducing the number of
weak learners involved in a classification. We shall now discuss the ordering of the
weak learners. Classification speeds can be very sensitive to ordering [Sun and Zhou.
2013] and therefore it should be considered given the computational requirements of
particle identification for ALICE. Consider the following simple explanatory example.
Let h be a strong learner consisting of h1 : X → {−3, 3}, h2 : X → {−1, 1} and
h3 : X → {−1, 1}. Clearly if we use FastExit the ordering h1, h2, h3 will always return
after one execution of a weak learner while the ordering h3, h2, h1 will always involve
all three weak learners.

The first sorting technique we are going to discuss follows naturally from the
explanatory example in the previous paragraph. Simply annotate each weak learner
ht with a weight equal to |αt| + |βt| and then order the set of weak learners in
decreasing order [Kim at al. 2012]. This technique is simple and as the example in the
previous paragraph shows it can make major improvements. However, it is limited by
the fact that for more complex pruning techniques such as Direct Backwards Pruning
and Threshold Binary Decision Diagrams there is no guarantee that classification
speeds will be improved.

An obvious algorithm to find the optimal ordering would be an exhaustive search.
However, for a strong learner h consisting of T weak learners this would involve
checking T ! options. This is clearly not feasible for anything other than very small
T and therefore an algorithm called sifting is suggested as a compromise. Initialise
the sequence of weak learners into a random order. For every weak learner swap it
with the learner to its left until it has risen to the top. Do the same with its right
neighbours until it has sunk to the bottom. After each swap measure the efficiency
of the current ordering and record which permutation was best. At the end of this
iteration place the weak learner in the position where it performed best. Repeat this
process for each weak learner m times [Sun and Zhou. 2013]. The time complexity of
this algorithm is O(mT 2) [Sun and Zhou. 2013]. The difference in efficiency between
the returned permutation and the actual best permutation is reduced by increasing
m.

The primary issue with this algorithm is its computational cost. O(mT 2) is reasonable
but the constant factors are large primarily due to the fact that a permutation’s
efficiency must be calculated on every iteration of the inner loop. The exact method for
determining the efficiency of a permutation is not strictly defined. However, common
techniques involve calculating the expected path length. The exact details of this
calculation can be found in [Sun and Zhou. 2013]. The technique involves classifying
all training instances and therefore is costly. Despite the computational cost it is still
a massive improvement from the brute-force method and does obtain better solutions
than simpler sorting implementations such as the one mentioned above. Also, it only
needs to be run once and the ordering can be saved for future classifications.

Throughout this paper we have focused on the speed of classification rather than
training speeds. This is due to the desired on-line classification for ALICE. However,
there is literature on increasing training speeds which reveals two classes of optimi-
sation generally used. The first is to use subsets of the training data and the second is
parallelism. Despite the apparent sequential nature of training a boosting algorithm,
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parallel implementations have been suggested [Lozano and Rangel. 2005][Merler et
al. 2006].

This review introduced the concept of boosting to the reader. Boosting as a pos-
sible particle identification technique was compared with artificial neural networks.
It was shown that boosted decision trees performed very well compared to artificial
neural networks. Secondly, we reviewed how boosted algorithms can be pruned to im-
prove performance and accuracy - two important requirements for ALICE. The review
has made it clear that boosting is an effective technique for particle identification and
appropriate for ALICE. Therefore, boosting should be considered as a possible solution
to the particle identification problem at ALICE.
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