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The ALICE Experiment at CERN’s Large Hadron Collider is an experiment to research nuclear matter
under extreme conditions. One of the main detectors is the Transition Radiation Detector (TRD) which is
designed to measure and identify electrons.
A major upgrade of the ALICE detector will increase the data rate that has to be processed online. To
compensate for the increase in the data rate, online data processing will need to be redesigned. The algo-
rithms for electron identification will be required to run on the the data stream which has been compressed.
The compression algorithms require the compressed data to still provide comparable electron identification
capabilities as with uncompressed algorithms. Various compression techniques, such as lossy and lossless
compression, need to be tested to determine the most efficient compression algorithm while ensuring accu-
racy when performing electron identification. The considerations for particle identification required when
compressing data are the two key data items, the average pulse height and the dependence on the drift time.
The goal is to ensure the pion efficiency (fraction of pions misidentified as electrons at fixed electron effi-
ciency) is at minimum when apply electron identification algorithms with compressed data inputs.
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1. INTRODUCTION
A Large Ion Collider Experiment (ALICE) is a heavy ion experiment at CERNs Large
Hadron Collider [Lippmann et al. 2006]. The aim of the experiment is to study in-
teracting matter at extreme energy densities. One of the main detectors for electron
identification in ALICE is the Transition Radiation Detector [Kweon et al. 2009].

The Transition Radiation Detector (TRD) is part of in the central barrel of ALICE
and surrounds the Time Projection Chamber (TPC). The TRD has a total of 540 cham-
bers. Each of the TRD chambers consists of a radiator, drift chamber with pad readout
and electronic readout. These components are essential for the collection of data for
electron identification.

A major upgrade of the ALICE detector will increase the data rate that has to be
processed online to more than 1 terabyte per second [Abelev et al. 2014]. Due to this
upgrade the TRD will have to redesign its online data process to limit the data rate
recorded to less than 10 gigabytes per second. The ALICE upgrade requires improved
algorithms to run on a data stream which has been compressed through feature ex-
traction.

This article focuses on finding an efficient data compression technique which will
still provide comparable electron identification capabilities as with uncompressed
data.

2. PARTICLE IDENTIFICATION
2.1. Particle Identification Requirements
Aamodt et al. [2008] identifies the key information required for particle identification,
with the use of ALICE Transition Radiation Detector, is the average pulse height
and the dependence on the drift time. The following section highlights the two main
differences between data points for pions and for electrons. Pions and electrons are
the two main particles detected by the TRD.
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Fig. 1. Graph depicting average pulse height as a function of drift time for pions, electrons without a radi-
ator and electrons with a radiator

2.1.1. Total amount of deposited charge
The electrons signal is typically larger than that of pions. With a momentum

of 2GeV/c, in the amplification region the electron signal is about 1.5 times larger
than that of pions and the region where transition radiation photons are absorbed
preferably is about twice as large for electrons (See figure 1). Particle identification
algorithms such as cluster counting [Ludlam et al. 1981], truncation [Andronic 2004]
and likelihood method [Cherry et al. 1974] use the total amount of deposited charge
for electron identification.

2.1.2. Transition radiation peak
At longer drift times the electron signal increases, since the transition radiation

photons are mostly absorbed within the drift region, while the signal of pions re-
mains constant (See figure 1). The signal’s time information can be used to aid the
identification of electrons. The two likelihood methods (LQ), LQX method [Andronic
2004] and 2-dim LQ method, make use of the time information to help with electron
identification.

The electron/pion discrimination performance of a detector is measured with the
pion efficiency επ. The pion efficiency is the fraction of pions that is misidentified at
a fixed electron efficiency εe. The electron efficiency is the fraction of electrons that is
identified correctly. The goal of ALICE TRD is to have a pion efficiency of 1% for 90%
electron efficiency [Wilk 2010].

2.2. Particle Identification with Neural Networks
The current algorithm for particle identification with TRD is make use of artificial
neural networks. Artificial neural networks are statistical learning algorithms that
are used to estimate or approximate functions that can depend on a large number of
inputs and unknowns [McCulloch and Pitts 1943]. They are systems of interconnected
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Fig. 2. Reference network as used in AliRoot v4-17-Rev12 for Layer 1 and particles of 2 GeV/c

neurons and are able to use machine learning and pattern recognition for computation
on input values.
Bellotti et al. [1993] performed the first successful approach for electron identification
using neural networks. Bellotti used a network which was a three-layered multilayer
perceptron which used the deposited charge as input. He showed that artificial neural
networks could increase the performance by a factor of up to three compared to the
likelihood methoods.
The follow section highlights the neural network algorithm currently implemented
discussed by Wilk [2010].

2.2.1. Neural Networks Using Deposited Charge Information
A standard method for particle identification for the TRD is with the use of artificial

neural networks with the deposited charges as input parameters. The network is
a feed-forward network which composes of the input layer, two hidden layers and
the output layer (See figure 2). Several factors specify the topology of the network.
The number of input neurons is limited to eight due to the compromise between
discrimination power and needed storage space. The number of output neurons is two
as only electrons and pions are taken into account. The number of hidden layers and
hidden neurons is determined by several tests. Fifteen and seven hidden neurons, was
found to give the best performance [Wilk 2010].

2.2.2. Neural Networks with Preprocessed Variables
The following are variables required for particle identification:

— the number of clusters above a high threshold Np
— the number of time bins above a low threshold Nthresh
— the time bins above a low threshold Tmax
— the deposited charge of the second largest cluster Q2

— the integrated charge below the low threshold Qsum
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3. DATA COMPRESSION
Data compression involves encoding information using fewer bits than the original
data [Mahdi et al. 2012]. It is either lossy or lossless. Lossy and lossless data compres-
sion differ in that lossy data compression involves removing unnecessary information
while lossless data compression eliminates statistically redundant information.

3.1. Considerations in Data Compression
Jain and Lakhtaria [2013] highlight several factors that are needed to be considered
with data compression as different systems have different compression requirements.

— Compression techniques need to be considered when compressing data such as lossy
or lossless data compression. Data that is needed to be accurate requires lossless
data compression while lossy algorithms may be used for approximations on data.

— Compression ratio is the percentage resulting from dividing the compression size by
the original file size. It determines how well data is compressed in terms of size. The
compression ratio is used to draw comparisons between data compression techniques.

— Compression time may vary depending on the algorithm used for data compression.
Real-time data compression may require data compression to be faster as opposed to
smaller in compression size.

Considerations on the context of the data need to be taken into account when applying
data compression algorithms.

3.2. Types of Data Compression
3.2.1. Lossless Data Compression

Lossless data compression is a class of data compression algorithms. The algorithms
allow for the exact original data to be reconstructed from the compressed data. Lossless
data compression is important for obtaining the original data when applying decom-
pression without having any assumptions made on the data.

Run Length Encoding Technique. Run Length Encoding (RLE) is a simple form of
data compression [Porwal et al. 2013]. This technique looks at the runs of the data. The
run is the length of a repeated consecutive data element. The compressed data stores
the data element as a pair with the consecutive number of counts of that element.
RLE can be efficiently and easily applied. A disadvantage with RLE is that it may
not be an optimal solution for data with very few runs or data with each consecutive
element being unique. In the worst case the size of the output data is twice as large as
the input data.

Huffman Coding. Huffman [1952] developed the Huffman Coding Algorithm which
involves converting characters in a data file into binary code. Huffman Coding involves
a pre-analysis of data. The general idea behind Huffman Coding is to convert the most
common characters in a file to have the shortest binary code and the least common
have the longest binary code.
Huffman Coding is an optimal algorithm for symbol-by-symbol coding, where symbols
are unrelated. Huffman Coding will produce a worst case scenario when the probability
of a symbol exceeds 50%.

Shannon Fano Coding. Fano [1963] developed the Shannon Fano Coding which is
a compression technique to construct prefix code based on a set of symbols and their
probabilities. It guarantees that all code word lengths are within one bit of their theo-
retical ideal unlike Huffman Coding. Shannon Fano Coding orders elements from most
probable to least and recursively divides into them two sets whose probabilities are as
close as possible to being equal.
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Shannon Fano Coding does not always give an optimal prefix code. When the probabil-
ities near the inverses of powers of 2 the Shannon Fano algorithm is most efficient.

Arithmetic Encoding. Arithmetic encoding is similar to Huffman coding except it
differs as rather than separating the input into component symbols and replacing
each with a code, arithmetic coding encodes the entire message into a single number
and a fraction between 0 and 1 [Rodionov and Volkov 2007]. It provides extremely
high coding efficiency and ensures lossless data compression.

3.2.2. Lossy Data Compression
Lossy compression uses inexact approximations for representing data that is being

encoded [Witten et al. 1994]. It is mostly used in compression of multimedia such as
audio, video and images. Lossy compression suffers from generation loss which causes
a file to lose quality with multiple compressions and decompressions.

Lossy Transform Codecs. Lossy transform codecs cuts samples of data in a file into
small segments then transforms it into a new basis space which is then quantized. The
entropy code is generated from the quantized values.

Lossy Predictive Codecs. Lossy predictive codecs use previous decoded data to
predict the current data sample.

In some cases, lossy data compression can compress a file into a much smaller
compressed file, as opposed to lossless compression, while still keeping the general
content of the original data.

4. DATA COMPRESSION IN ALICE TRD
4.1. Importance of Data Compression in ALICE TRD
The amount of data collected by the ALICE TRD is expected to be extremely large.
Sharma et al. [2014] highlights the many advantages of data compression. The advan-
tages include reducing the complexity and cost of the data storage. The aim for the
data compression for ALICE TRD is to limit the data rate and processing to record
less than 10 gigabytes per second.
While the data compression needs to be as efficient as possible, careful considerations
need to be made to the compression algorithms to ensure that the compression does
not affect the accuracy of the electron identification algorithms.

4.2. Approaches to Data Compression in ALICE TRD
Analysis on lossless and lossy compression approaches are required for the data
generated by the TRD chambers in the ALICE experiment.

4.2.1. Lossless compression of TRD data
Although Jain and Lakhtaria [2013] found that Huffman Coding (from comparison

between RLE, Huffman Coding and Shannon Fano) produces optimal results for
language related data, Huffman Coding would not produce optimal results for ALICE
Data as the ALICE TRD data is not a set of unrelated symbols and as mentioned in
section 3.2.1 Huffman coding is an optimal algorithm for symbol-by-symbol coding.
Porwal et al. [2013] found that arithmetic encoding is significantly better than
Huffman Coding. Arithmetic coding showed to give a better compression ratio and
compression time over Huffman Coding.
The lossless compression technique for TRD may require the use of a probability
model for the data fields. By looking at patterns with sample positioning of values in
correlation with its signal from the TRD, the data can be grouped with a probability
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distribution for entropy coding. Additionally exploitation on the correlation between
consecutive samples can be achieved using a prediction scheme. A similar approach
has been investigated with the ALICE TPC experiment and could be applied to the
TRD [Nicolaucig et al. 2002].
Wulff [2009] studied the effects of zero suppression on the resolution and the need for
a good data compression by noise suppression and to minimise the signal loss. Zero
suppression is the removal of redundant zeroes from data. Wulff found that possibly
dangers in data compression include losing important information such as if deposited
charges are rejected then position reconstruction might produce errors.
Other alternative models for data compression can also be applied such as using the
time information such as the space correlation and order time correlation.

4.2.2. Lossy compression of TRD data
A lossy compression technique could be explored to possibly even further increase

the compression ratio. Lossy compression needs to preserve the data for the average
pulse height and the dependence on the drift time as they are the main interest for the
experiment. Experimentation with TPC data have currently been implemented using
area of bunches (signals coming from each pad), center of mass of bunches and the
correlation between bunch area and sample values [Nicolaucig et al. 2002]. A similar
approach can be looked into to be applied to the TRD data.

4.3. Compression Analysis
The compression algorithms are to be tested on the simulations done with the use
AliRoot [Brun et al. 2003]. AliRoot is the ALICE offline-line framework for simulation,
reconstruction and analysis.
As mentioned in section 3.1 the effectiveness of compression algorithms are measured
using the compression ratio and the data rate.
The accuracy of the TRD is measured with pion efficiency as discussed in section 2.1.
Accuracy in the data compression is measured by the comparison between the pion
efficiency for electron identification with compressed data and the original data.

5. CONCLUSIONS
Investigation of lossless and lossy compression approaches for the data generated by
the TRD chamber in the ALICE experiment shows that several considerations need to
be taken when compressing the TRD data. The two key data items for data compres-
sion for the TRD are the average pulse height and the dependence on the drift time.
The compression algorithms need to keep the overall computational complexity feasi-
ble for real-time implementation while still allow electron identification algorithms to
produce the same results as if the original data was used in electron identification.
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