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ABSTRACT
The ALICE Transition Radiation Detector (TRD) at CERN
is planned for a major upgrade in 2017/18. One of the main
tasks of the ALICE TRD is the identification of particles,
mainly electrons and pions. The upgrade will increase inter-
action rate of particles, which means new particle identifi-
cation algorithms need to be developed. The particle iden-
tification algorithms are divided into online and o✏ine al-
gorithms. The online algorithms are used to determine the
most e↵ective data to be stored by the TRD while the of-
fline algorithms use the data to determine the classification
of the particles.
This paper focuses on the development of the online algo-
rithm to create an 8-bit value known as a Particle Identifier
(PID) number. The PID number is used to represent a par-
ticle’s tracklet obtained from the TRD. A simple approach
to create these PID numbers is with the summation of the
tracklet data. The summation approach has limitations in
the distribution of PID numbers and pion e�ciencies. This
paper identifies an alternative approach with the use of Arti-
ficial Neural Networks (ANNs) as a more e↵ective algorithm.
The neural networks are trained with the backpropagation
algorithm to create an e↵ective network to determine PID
numbers for tracklets. Various neural networks are tested
with inputs from unprocessed data and preprocessed vari-
ables. Results show that the ANNs produce an improved
pion e�ciencies and PID distributions than the summation
approach when tested with simulated data created with Ali-
Root. The results obtained show that use of ANNs has the
potential to be a viable approach for online algorithms.
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1. INTRODUCTION
CERN, European Organization for Nuclear Research, is

the largest particle physics laboratory in the world. The
fundamental structure of the universe is studied at CERN.
Most of the experiments involve the operation of the Large
Hadron Collider (LHC) [1]. The LHC is a powerful particle
accelerator which allows two high energy particle beams to
travel at close to the speed of light before they are made
to collide [7]. The collider was built to allow physicists
to test the predictions of theories which involve particle

physics, high energy physics and other unsolved questions of
physics. Seven detectors have been constructed at the LHC
which range between general purpose particle detectors to
very specialised detectors. A Large Ion Collider Experiment
(ALICE) is a heavy-ion detector in the LHC ring which con-
tains three main cylindrical sub-detectors: the Inner Track-
ing System (ITS), Time Projection Chamber (TPC) and
Transition Radiation Detector (TRD). The purpose of AL-
ICE is to observe the physics of strongly interacting mat-
ter and the quark-gluon plasma at extreme values of energy
density.

Figure 1: An illustration of ALICE. The highlighted
region represents the Transition Radiation Detector
(TRD).

This paper focuses on the Transition Radiation Detector
illustrated in Figure 1, which is the outermost of the three
main sub-detectors. The TRD is used to identify electrons
and pions which are detected from the emission of transition
radiation [3]. In 2017/18 the ALICE detector is scheduled
for an upgrade which increases the interaction rate of the
particles. After the ALICE upgrade, new algorithms need
to be implemented for particle identification. These algo-
rithms are divided into online and o✏ine algorithms. The
online algorithms are used to reduce the data volume that
will be transferred to permanent storage while the o✏ine al-
gorithms use the data, calculated by the online algorithms,
for the classification of particles.
The online algorithms are a↵ected by the upgrade as the
amount of data stored by the electronics in the TRD need
to be significantly reduced. These algorithms need to be
e�cient due to the increase in the interaction rate but still
provide enough information for the o✏ine algorithms to pro-



duce comparable particle identification capabilities as with
the raw TRD data. The aim of this paper involves the iden-
tification of e↵ective and e�cient online algorithms. In this
paper the limitations of a summation approach to create an
online algorithm is determined and explores the use of neural
networks to improve on the summation approach while en-
suring the algorithm remains e�cient. The e�ciency of the
algorithm is ensured by limiting the complexity of the neu-
ral network through tests with di↵erent input types. The
hypothesis of this paper is that the use of Artificial Neu-
ral Networks for an online algorithm produces better pion
e�ciencies and PID distributions than the summation ap-
proach. An additional question of this paper is, what topol-
ogy of a neural network has the greatest potential for an
online algorithm.

The paper is organised as follows. Section 2 discusses the
background and related work by highlighting the TRD data
format, the AliRoot framework and features of the particles
that need to be identified. The concepts of Artificial Neural
Networks are introduced and current applications of neural
networks in particle identification are explained. Section
3 then describes the framework built to create the software
for experiments with Artificial Neural Networks, followed by
Section 4 which gives an overview of the methods used to
create the online algorithms with the framework. The results
from the tests with the summation and Artificial Neural
Network approach are analysed in Section 5 with Section 6
comparing the approaches. Section 7 rounds o↵ the paper
with conclusions and future work.

2. BACKGROUND AND RELATED WORK
In this section, details of the Transition Radiation De-

tector data format and the features of the particles are ex-
plained. The concepts of Artificial Neural Networks and
their applications in particle identification are also described.

2.1 Transition Radiation Detector Data For-
mat

The TRD is composed of 18 super-modules which consist
of 5 stacks. Each of these stacks consists of 6 chambers,
which corresponds to 540 chambers in total. The chambers
measure the charge that is deposited on the readout pads,
which are organised into 144 columns which have either 12
or 16 rows, depending on the type of chamber [20]. For each
event, every pad is sampled up to 30 times. The data that
is sampled is the an Analogue-to-Digital (ADC) signal. For
this work, we used 27 of these samples known as time-bins.
The breakdown of the TRD layout is presented in Figure 2.

Particles which go through the stack in the TRD leave
behind a track. A particle can cross up to six chambers,
leaving a short track segment or tracklet in each of them.
A tracklet consists of four pad-columns which best repre-
sents the particle. The number of ADC values stored in the
MCMs, to represent the particle’s tracklet, is 27⇥ 4 = 108,
where each ADC value is 10-bits.

Currently the TRD has two modes which are used by the
readout electronics: tracklet mode and raw readout mode.
The raw readout mode has no practical limitations but re-
quires signal handshaking which has high overhead. The
tracklet mode avoids the handshaking latency but is limited
to the read-out of four 32-bit words for each MCM [13]. The
tracklet mode can perform approximately 120 clock cycles.

Figure 2: An illustration of the breakdown of the
TRD.

Figure 3: A 2D histogram representing the ADC val-
ues recorded from single pad-row in a chamber (144
pad-columns with 27 time-bins). The histogram
contains one tracklet which is situated around the
20th pad-column.

The proposed approach for the TRD upgrade is to elimi-
nate the raw readout mode and use 8-bits from the tracklet
mode to store details about the tracklet [10]. The remaining
bits are used to store other information about the tracklet
such as the position, angle and the momentum. The 8-bit
value is called the Particle Identifer (PID) number. The PID
number is planned to represent the tracklet information and
replace the 108 ADC values stored in the MCMs. The PID
numbers for the particles are then used by the o✏ine algo-
rithms for particle identification instead of the raw tracklet
ADC information. The purpose is to reduce the volume of
the data stored and time it takes to calculate the data to be
stored, to allow the TRD to process more particles from the
increased interaction rate [4].

2.2 AliRoot Framework
The o�cial software framework used within ALICE is Ali-

Root [9]. AliRoot is written in C++ and is based on Root,
which is a large scale Object-Oriented data analysis frame-
work. It is used for data simulations, event reconstruction,
detector calibration, detector alignment, visualization and
data analysis. The generation of particles with AliRoot are
achieved with Monte Carlo methods to simulate the results
produced by the physical detectors at CERN. Monte Carlo
methods are a broad class of computation algorithms that
rely on repeated random sampling to obtain numerical re-
sults and are often used in physical and mathematical prob-
lems [14]. Further details on how the particles are simulated
are explained in the o�cial AliRoot documentations [8].



2.3 Artificial Neural Networks
An Artificial Neural Network (ANN) is a processing algo-

rithm which uses statistical learning that is inspired by the
biological nervous system [21]. ANNs have various applica-
tions in pattern recognition and data classification through
learning processes. ANNs are generally used to identify
trends or patterns that are too complex to be noticed by
humans or other computer techniques.
The main components of ANNs are neurons and synapses.
A neural network is composed of a number of neurons which
are small processors that are limited to simple calculations.
The connection between neurons are the synapses. The
synapse each have their own weight. The intensity of the
weights indicate the a↵ect a neuron has on a network. ANNs
are usually represented as directed graphs where the neurons
represent vertexes and synapses are edges with direction.
Neural networks have three types of layers: the input layer,
hidden layer and output layer. The neurons in the input
layer is used to insert the data into the network which then
undergoes a forward pass through the synapses to the hid-
den layers and finally to the output layer where the results
are extracted from the output neurons.
There are three major learning paradigms: supervised learn-
ing, unsupervised learning and reinforcement learning [5].
The focus of this paper investigates a supervised learning
technique which uses training data to create a function that
produces desired outputs. The training data consists of the
inputs and target outputs. The learning algorithms use the
training data a produce an inferred function. One of the
well-known algorithms for training neural networks is back-
propagation [15]. The backpropagation algorithm attempts
to find a function that best maps a set of inputs to its tar-
get output. The aim of the backpropgation algorithm is to
minimise the error when training. The algorithm for back-
propagation is highlighted in Algorithm 1 [23]. The back-
propagation is a slow learning process which updates the
network with one training sample at a time. The first step
in learning involves a forward pass of the network with the
training sample as input. The output is then compared to
the target output and the di↵erence calculated is the error.
The next step involves a back pass which computes the new
weights (W

new

) for the network with Equation 1 based on
the error, learning rate (LR), output (0) and momentum
(M). The learning rate a↵ects the speed at which the ANN
adjusts its weights while the momentum is used to prevent
a convergence to local minimum or non-optimal solution.

w
new

= w
old

+ LR ·O · error +M ·�w (1)

The process is repeated with the training data until a stop-
ping criteria is satisfied.

Algorithm 1 Backpropagation Algorithm

initialize network with random weights
do

for item in training data
Forward pass: through network ! output
error = target - output
Back pass: compute �w for all weights
update network weights

until stopping critera satisfied
return network

2.4 Data Features
The particle’s tracklet data is used to distinguish between

electrons and pions. The tracklet data is simplified to distin-
guish these di↵erences by combining the four pad-columns
for each time bin into one summed ADC value. Equation 2
shows the calculation used to combine the four pad-columns
for 27 time bins.

sum(tb)
n

=
4X

i=0

tb
n,i

n = {0, 1, 2, ..., 26} (2)

Figure 4 shows the average summed ADC value across the
27 time bins for electrons and pion. Several features can be
distinguished. One of the major di↵erences is the total sum
of all the ADC values across all the time bins are greater for
electrons than pions. Additional di↵erences observed are
that electrons create two ADC peaks and pions create one
ADC peak. Both electrons and pions have a peak near the
first few time bins but the electrons contain an additional
peak around the last few time bins.

Figure 4: Histogram representing the average ADC
signal for each time bin. Electrons are represented
in red and pions in blue. The average result is ob-
tained from 2000 particles

The di↵erent data features of electrons and pions are ob-
tained from the average result from two thousand particles.
Individually many of the particles do not have these distinct
features. An electron or pion tracklet individually produces
completely di↵erent results to the average case and in some
cases pions may appear to have electron properties and vice
versa. The results vary due to di↵erent energy losses and
photon emissions which cannot be accurately tracked by
the TRD. Further details about the causes of the varying
tracklet results is discussed by Wilk [24]. It is important to
identify the relevance of the features to distinguish between
electrons and pions.

2.5 Particle Identification with ALICE TRD
Multiple approaches have been explored for particle iden-

tification with ALICE TRD. Some of the classical methods
of particle identification include Truncated Mean [2], Clus-
ter Counting [19] and Likelihood on Total Deposited Charge
[6].
Recently two approaches have been experimented with Ar-
tificial Neural Networks which saw improved results in par-
ticle identification compared to the classical methods. The
first approach uses time slices extracted from the raw ADC



signals [24] and the second approach uses preprocessed vari-
ables [11].

2.5.1 Time Slices Approach
The simplest approach with ANNs use the ADC values

from the tracklets and divides them into groups called time
slices. The application of these networks saw improved re-
sults compared to the Likelihood on Total Deposited Charge
method. The network composed of inputs for six time slices
was trained and tested with 2002 test input data from four
ALICE TRD prototype chambers [12].
A network implemented by AliRoot makes use of eight time
slices as inputs and two hidden layers, with fifteen and seven
hidden neurons respectively. The number of output neurons
depend on the number of classifications. In the case of iden-
tifying electrons and pions, two output neurons are used.

2.5.2 Preprocessed Variables Approach
The second approach uses preprocessed variables as inputs

to the neural network. The preprocessed variables are deter-
mined by the data features observed for each type of particle.
Five features have been identified by Kim et al. to distin-
guish the di↵erence between electrons and pions [11]. These
features include the number of clusters above a high thresh-
old, the number of time bins above a low threshold, the time
bin with the largest amount of charge, the deposited charge
of the second largest cluster and the integrated charge below
a low threshold. The topology for the ANN uses one hidden
layer with one hidden node and one output. The topology
was found to be very successful in separating electrons from
pions in simple Monte Carlo simulations [17]. However, the
approach had not been evaluated with test beam data or
AliRoot simulation.

2.5.3 Pion Efficiency
The accuracy of the algorithms for electron identification

are measured with the pion e�ciency. The pion e�ciency is
the percentage of pions misidentified as electrons for a given
electron e�ciency. A typical electron e�ciency of 90% is
used. The pion e�ciency is found by identifying the area
in which 90% of the electrons are most likely to be situated
then calculating the fraction of pions situated in the area.
Figure 5 highlights the area with 90% of electrons where the
pion e�ciency is calculated by determining the fraction of
pions in this area.

3. FRAMEWORK
The goal of this work is to create software that experi-

ments with potential avenues for a PID generator algorithm.
The software is developed in C++ to allow for compatibil-
ity with AliRoot. The software is developed with clear ar-
guments, methods and naming conventions for easy modifi-
cations and transferability. The backpropagation algorithm
for training the neural networks can be viewed as a black-
box and extensive knowledge in neural networks is not re-
quired when using the software. The results from training
record the pion e�ciencies, PID distribution and errors of
the networks from trained and untrained data.

3.1 Backpropagation

Figure 5: Histogram representing the frequency of
particles with the likelihood to be an electron.

The backpropagation algorithm is applied to adjust the
weights of the neural network. The ANN goes through 10
000 iterations of the backpropagation algorithm with the
training data as input. The number of iterations, learning
rate and momentum can be adjusted but for the experi-
ments conducted the variables are set to 10 000, 0.5 and 0.7
respectively. These numbers are chosen to ensure the neural
network is given enough time to learn and find a general
trend on the performance of a network when compared to
other networks. In all cases the inputs are normalised such
that the inputs are between 0 and 1. The inputs are nor-
malized to improve the performance of the learning process
[16]. Due to the normalisation, all the weights are randomly
initialised according to a Gaussian distribution. The Gaus-
sian distribution has standard deviation of 1 with the mean
of 0. The neurons each used the sigmoid function as their
activation function which is represented in Equation 3. The
sigmoid function is used as it is considered more biologically
realistic than other activation functions [18].

�(x) =
1

1 + e�x

(3)

The conventional validation method is used by training the
ANN on 80% of the tracklets and the remaining 20% are
used to determine the accuracy of the neural network on the
unseen data. The time it takes to train the ANN depends
on the amount of generations, size of the neural network
and the size of the training sample, for approximately 4400
tracklets take between 1 and 2 hours to train for 10 000 gen-
erations.

3.2 Data Extraction from AliRoot
In this paper, analysis and tests are performed on parti-

cles created from simulations with the AliRoot framework.
A total of 2000 particles were simulated. The results from
the simulations assumed that the particles’ tracklets did not
overlap.
The process of extracting the tracklet information involve
several steps which require both the AliRoot’s built-in func-
tions and external functions. The tracklet is retrieved by
using AliRoot’s built-in functions to return a pad-column,
which gives the general area of the tracklet. The pad-column
is used to obtain ten surrounding pad-columns. The track-



let is obtained from these ten pad-columns by choosing the
four pad-columns with the highest consecutive total summed
ADC values. In the ALICE TRD, the method to obtain the
tracklet di↵ers as the ADC values goes through a preproces-
sor to find the appropriate pad-columns for the tracklet.
Out of the 2000 particles generated approximately 5500 track-
lets were extracted. The online PID generation algorithm
treats each of the tracklets as the particle it is associated
with. Therefore the online PID generation algorithm as-
sumes that each particle only creates one tracklet. The of-
fline particle identification algorithms use the collective PID
numbers associated with a particle to determine the classi-
fication of the particle. For the remainder of this paper, the
particle’s tracklets are treated independently of each other.
Therefore each particle is assumed to have one tracklet and
each tracklet is assigned their associated particle type.

4. IMPLEMENTATION
The aim of this work is to create an e�cient algorithm

that minimises the pion e�ciency at a fixed electron e�-
ciency of 90%. The pion e�ciency is be minimised to reduce
the number of particles misidentified by the o✏ine particle
identification algorithms. The online algorithm to create
PID numbers needs to be e�cient as it must be completed
in the tracklet-mode to remove signal handshaking. There-
fore the number of operations for the online algorithm is
limited to around 100 arithmetic operations due to the lim-
itations of the number of clock cycles in the tracklet-mode.

In the follow section, two approaches are discussed to cre-
ate the online PID generator algorithm. The first approach
focuses on the summation of ADC values and the second
involves the use of Artificial Neural Networks.

4.1 Summation Approach
The simplest approach to create an algorithm that calcu-

lates PID numbers for tracklets is a summation approach.
The summation approach uses the total sum of the ADC
values in a tracklet. The summation of the ADC values is
one of the major features that makes electrons di↵erent to
pions. As discussed in Section 2.4, electrons tend to pro-
duce higher ADC values across all time bins than pions.
This data feature is used to produce a 8-bit PID number
for particles by taking summation of the ADC values across
all time bins (sum

p

) and convert it to a number between 0
and 255 (8-bits). In order to reduce the summation value to
a number between 0 and 255, the maximum (sum

max

) and
minimum (sum

min

) possible summation of ADC values for
an electron and pion tracklet is required. The PID number
for a tracklet is be calculated with Equation 4.

PID =
sum

p

� sum
min

sum
max

� sum
min

⇥ 255 (4)

4.2 Artificial Neural Network Approach
As discussed in Section 2.3, ANNs have applications in

data classification through learning processes. The neural
networks adapt to inputs by tuning numeric weights based
on experiences. The idea of the ANN is to create a network
of weighted sums, which produces a PID number from given

inputs. The PID number is calculated by completing a for-
ward pass of the neural network with the tracklet data as
input.

Several neural network topologies are considered for the
construction of a PID generator. These topologies are di-
vided into two sets: a networks with one output and net-
works with two outputs. The two sets indicate di↵erent
formats for the PID numbers.
The network with one output treats the output signal near
1 as most likely to be electrons and 0 as pions. The output
is converted into a PID number by multiplying the output
calculated by 255. Therefore, electron PID numbers are ex-
pected to be around 255 and pion PID numbers are expected
to be around 0. This approach used all 8-bits to create a
single PID number.
The network with two outputs creates two 4-bit PID num-
bers. Each 4-bit PID number represents the type of particle,
either electron (PID

e

) or pion (PID
p

). The aim is for elec-
trons to produce signals of around 1 for PID

e

and around
0 for PID

p

and the pions to produce signals of around 0 for
PID

e

and around 1 for PID
p

. In both cases the signal is
converted to a 4-bit number by multiplying the output by 15.

Both of the topologies are tested with a set of four di↵erent
input types. The input types are a mixture of preprocessed
variables and unprocessed tracklet ADC information. The
various inputs are used to test the e↵ectiveness and extent
of simplification of the raw data and the possibility of using
the features discussed in Section 2.4 as inputs into the neu-
ral network.

Due to limitations of the tracklet mode, the complexity
of the neural networks are limited to around 100 arithmetic
operations. Therefore there are a maximum number of hid-
den nodes for each network topology. The calculation shown
in Equation 5 is used to determine the maximum number of
hidden nodes (H) for the di↵erent number of inputs (I) and
outputs (O).

100 = (I)
|{z}
input

+ [(I ·H) + (H · 2)]
| {z }

input to hidden

+ [(H ·O) + (O · 2)]
| {z }

hidden to output

(5)

For simplicity reasons, the calculations in the neurons are
assumed to have two operations and the processing of the
tracklet data before being stored in the input neurons are
not considered. Two operations are selected for calculations
in the neuron as the neuron’s main calculation is the activa-
tion function. The activation function used in this work is
the sigmoid function but it is possible to use a much simpler
function which is limited to two operations. The number of
hidden layers is limited to one as one hidden layer is su�-
cient for the majority of complex problems [22].

The next components of the paper discusses the four in-
put types used to create PID generators with ANNs. The
number of inputs tested are 27, 9, 5 and 8. Table 1 shows the
maximum number of hidden nodes calculated by Equation 5
for each input.



Table 1: Maximum Number of Hidden Nodes for
Each Input Type

Outputs
Inputs 27 9 5 8

1 2 7 11 8
2 2 6 10 7

27 Inputs: Time Bins.
The simplest neural network approach uses 27 time bin

ADC values from the tracklet information obtained from
Equation 2 as inputs. The network is used to determine the
e↵ectiveness of inputs with tracklet data that has undergone
little processing. Due to the large number of inputs, the
complexity of the network is limited to two hidden nodes.

9 Inputs: Time Slices.
The second method reduces the amount of the input data

but allows for a more complex network compared to the 27
inputs method. The increase in the complexity of the neu-
ral network creates an increase in weights from the hidden
to output layer and thus find an e↵ective PID generator al-
gorithm. The nine inputs are achieved by converting the
27 time bins into 9 time slices by taking the sum of three
consecutive time bins. These nine time slices are then used
as inputs into the neural network. Nine time slices are cho-
sen as the time slices are equally calculated from three time
bins.

5 Inputs: Preprocessed Variables.
The third method uses the features discussed in Section 2.4

as inputs to a neural network. The features are based on
the average tracklet results, which are observed in Figure 4.
This approach tests the e↵ectiveness of creating PID values
based on inputs created by preprocessed variables. The cal-
culations to determine the values of the preprocessed vari-
ables only requires simple counting methods and summa-
tions which is not as computationally expensive as the pre-
processed variable discussed in Section 2.5.2.
Five of the main features used as inputs include:

• The total sum of all charges across all time binsADC
sum

.

• The number of peaks created above a threshold T
p

.

• The number of time bins above a low threshold T
l

.

• The number of time bins above a high threshold T
h

.

• The time bin with the highest ADC value high
tb

.

8 Inputs: Preprocessed Variables and Time Slices.
This method combines the inputs of preprocessed vari-

ables and unprocessed variables. The inputs are the five
features used in the five input method and three time slices.
Three time slices are used to keep a balance between the
preprocessed and unprocessed variables while ensuring the
time slices each have an equal share of time bins. Each time
slices is calculated from the sum of nine consecutive time
bin ADC values. The three time slices provide a distinction
between the electrons and pions by dividing the time bins
between the first peak, the constant incline for electrons and
the second peak for electrons observed in Figure 4.

5. RESULTS
The results are based on the simulated particles created

with AliRoot discussed in Section 3.2. The results recorded
for the two approaches are the pion e�ciencies and the PID
frequency distribution for electrons and pions.

5.1 Summation Approach
The AliRoot simulations from the summation approach

produces a pion e�ciency of 57.7% at an electron e�ciency
of 90%. The pion e�ciency is very high and it may thus be
di�cult for particle identification algorithms to determine
the classification of the particles. A histogram of the PID
frequency distribution is represented in Figure 6. The gen-
eral trend is for the frequency of the electrons and pions to
form a peak in which tapers o↵. The electrons tend to have
a greater PID number than pions as expected.

Figure 6: Histogram representing distribution of
electron (red) and pions (blue) according to their
frequencies of each PID number.

The problem with the summation approach is that the
PID numbers tend to be between 0 and 100. Therefore the
summation approach does not utilise the full range of the
PID distribution. The two peaks in frequency for electrons
and pions are close together which make it very di�cult
to distinguish the between electrons and pions as the fre-
quency of PID numbers have significant overlap as shown in
Figure 6.

5.2 Artificial Neural Network Approach
The results from experiments with neural network are

based on the 20% of particles that are untrained by the
ANN. In addition to the pion e�ciencies, the error for the
neural network is calculated with the root mean square (RMS)
which is then divided by the number of outputs of the net-
work. The equation for the error calculation is shown in
Equation 6. The error of the network determines if the neu-
ral network is suitable as a PID generator algorithm. A
low error of a network indicates that the network has the
potential to be used as a PID generator algorithm.

error =

sP
particles

n=0

(T
i

�O
i

)2

particles
÷ outputs (6)

27 Inputs: Time Bins.
As shown in Figure 7 the errors for these networks are

very high. The limitations of the number of hidden nodes



Figure 7: Results from 27 inputs indicating the pion
e�ciencies (blue) and errors (red) for each hidden
node used. (a) shows the results from one output
and (b) shows the results from two outputs.

causes an problem in reducing the error of the ANN. The
pion e�ciency calculated fluctuated significantly with mul-
tiple tests, which indicates that the number of weights in the
neural network is too low. This problem occurred for both
one and two output topologies.
In order to improve the pion e�ciency a lower number of
inputs is required which allows the complexity of the neural
network to be increased and thus identify a better solution
for a PID generator algorithm.

9 Inputs: Time Slices.
In both nine input approaches the error is considerably

higher for the neural network with one hidden node. The
high error is due to the same problem of the 27 input ap-
proach where there is not enough weights in the network to
determine the features to classify the particles. The errors
on the remaining networks as shown in Figure 8 depicts a
lower and generally constant value for the di↵erent number
of hidden nodes, which can be improved by increasing the
number of generations to train the ANN. The pion e�ciency
generally decreases as the number of hidden nodes increases
but starts to increase when six hidden nodes are reached for
the one output approach. The network with two outputs
have pion e�ciencies which has a similar trend to the one
output method except the decrease stops at three hidden
nodes.

5 Inputs: Preprocessed Variables.
The tests conducted with the five input approach used the

following parameters for the threshold:

• T
p

is set to 70% of the maximum average ADC value
for electrons from the training sample.

• T
l

is set to average ADC value for the pions from the
training sample.

• T
h

is set to average ADC value for the electrons from

Figure 8: Results from 9 inputs indicating the pion
e�ciencies (blue) and errors (red) for each hidden
node used. (a) shows the results from one output
and (b) shows the results from two outputs.

the training sample.

These parameters are chosen to use features from both elec-
trons and pions. In both five input methods the error is
high for the initial low number of hidden nodes, but the er-
ror slowly decreases to a generally constant error. Figure 9
shows that the pion e�ciency generally decreases and then
increases at ten hidden nodes for the one output approach.
The two output approach has a similar e↵ect with a decrease
in pion e�ciency until nine hidden nodes.

8 Inputs: Preprocessed Variables and Time Slices.
The experiments conducted for the eight input method

used the same parameters for the preprocessed variables as
the five input method. As shown in Figure 10 the eight input
method has similar errors to the five input approach. The
two output method has a pion e�ciency at its lowest at two
hidden nodes and increases as the number of hidden nodes
increases but at seven hidden nodes it decreases again and
indicates a possibility of a more e↵ective network at higher
hidden number of nodes.
The one output method has its lowest pion e�ciency at five
hidden nodes, while the pion e�ciency increases as the num-
ber of hidden nodes increases.

6. DISCUSSIONS
The approaches to create the online PID generators for

particle identification are analysed and compared based on
their pion e�ciencies. These pion e�ciencies are calculated
from the tests conducted with simulated data from AliRoot.
Other factors based on the distribution of the PID numbers
for electrons and pions are analysed. The factors include the
extent in which the PID numbers are distributed across the
range of PID numbers and the frequency of each of the PID
number that occurs. These factors are used to determine



Figure 9: Results from 5 inputs indicating the pion
e�ciencies (blue) and errors (red) for each hidden
node used. (a) shows the results from one output
and (b) shows the results from two outputs.

the limitations and potential drawbacks of the PID genera-
tor algorithm.

6.1 Summation vs ANN Approach
The summation approach is a simple approach which per-

forms summation followed by a conversion into PID num-
bers. The approach with neural networks is more complex
approach which uses a network of weighted sum, where the
weights are based on features observed from training. Both
of these approaches have pros and cons. The summation
approach is computationally cheap but produces a pion ef-
ficiency of 57.7% with AliRoot simulation data which may
be di�cult for particle identification algorithms to correctly
identify the particles. The neural network approach is more
computationally expensive but produces a pion e�ciency of
between 40% and 55% depending on the structure of the
network. One of the key features of the neural network ap-
proach is that the PID frequency distribution for electrons
and pions created peaks on either ends of the PID num-
ber range. The frequency distribution is very di↵erent to
the summation approach as the summation approach creates
two peaks that overlap significantly. The frequency distri-
bution of the PID numbers for the summation approach also
has an problem in which the PID numbers tend to be be-
tween 0 and 100 and therefore not utilise the range of the
PID numbers completely unlike the ANN approach. The
frequency distribution of both approaches are shown in Fig-
ure 11. The improvement of the frequency distribution for
the ANN approach is important as the particle identifica-
tion algorithms can use the feature for easier classification
as high PID numbers indicate one type of particle and low
PID numbers indicate the other type of particle.

The pion e�ciency for the ANN tends to increase due to a
problem with misclassification. Therefore in some cases the
neural network incorrectly classified particles and formed

Figure 10: Results from 8 inputs indicating the pion
e�ciencies (blue) and errors (red) for each hidden
node used. (a) shows the results from one output
and (b) shows the results from two outputs.

small peaks in frequency for particles on the opposite end
of the target. This problem is potentially due to insu�cient
weights between the hidden and output layer for the neu-
ral network to identify the features of the tracklet. Further
details about the misclassification is discussed in the next
section.

6.2 Comparison with ANN Methods
The ANN approaches are analysed based on the best pion

e�ciencies obtained from the di↵erent types of inputs. The
comparisons are completed on one and two output approaches.
The aim is to identify the neural networks that have the most
potential for a PID generator algorithm.

6.2.1 Comparisons with One Output
The pion e�ciencies for the one output approach per-

formed generally poorly for the networks that used the time
bins or time slices as input. The approaches that used pre-
processed variables as inputs performed slightly better as
shown in Table 2. The preprocessed variables provided the
network with additional information which may have in-
creased the speed for the neural network to identify the fea-
tures. From Table 2 an observation of the five input network
showed that it needed a higher number of hidden nodes com-
pared to the eight input network. This is potentially due to
the e↵ect of including the three time slices in the eight input
method and the information provided by these inputs made
up for the additional hidden nodes required for the five input
network. This indicates that the time bin information is an
important feature in the classification of particles and needs
to be used in conjunction with the preprocessed variables.

The neural networks with low numbers of hidden nodes
have a limited PID distribution. In many of the networks
with a low number of hidden nodes, the PID numbers are



Figure 11: PID frequency distribution of the sum-
mation approach (blue) and an example ANN ap-
proach (red). The light blue represents the pions
and dark blue represents electrons. The dark red
represents the electrons and light red represents the
pions.

Table 2: Best ANN approaches with one output
Inputs Hidden No Pion E�ciency
27 2 54.28%
9 6 53.98%
5 9 47.32%
8 5 46.15%

limited to be between a small range, a sample from nine
inputs with two hidden nodes and one output shown in
Figure 12 has a limitation of PID numbers between 0 and
around 220. The cause of the limited range is due to the
number of weights from the hidden to output layer being
insu�cient to fill the PID number’s range. The limitations
of the range slowly decreases as the number of hidden nodes
increases. There is also a limitation in the how many hidden
nodes can be used as increasing the hidden nodes to too high
numbers may cause the network to over-fit the training data
and therefore only learn the data that it is given. This will
cause the pion e�ciency to be worse for the untrained data.
This problem occurred for the nine input method with two
outputs as can be seen in Figure 8 where the pion e�ciencies
slowly increase as the number of hidden nodes increases. An-
other problem that occurs that is mentioned in Section 6.1
is that some tracklets are completely misclassificated, there-
fore small peaks in the frequency distribution are created
on the opposite ends of the target PID number. This prob-
lem arises when there are too few weights assigned to the
network and thereby the network misclassifies the particles.
A sample of this problem is displayed in Figure 12 at PID
number 0 where many electrons (red) are misclassified as
pions (blue).

6.2.2 Comparisons with Two Outputs
Table 3 shows the pion e�ciencies with two output net-

works have a similar trend to the one output networks. Net-
works that use preprocessed variables produce better results
than networks with the time bin ADC value inputs. The
same observations of the limitations of the one output ap-
proach applies to the two output approach even though a
smaller distribution of PID numbers are used, since the PID
numbers are limited to two 4-bit numbers. These limitations

Figure 12: PID frequency distribution of the neural
network with nine inputs, two hidden nodes and one
output. The electrons are represented in red and
pions in blue.

of limited range of the PID distribution and PID misclassi-
fication occur with both approaches as the output from the
neural network is converted from a signal between 0 and 1
to a PID number with the same method of multiplication
with the highest possible PID number (either 15 or 255).

Table 3: Best ANN approaches with two outputs
Inputs Hidden No ⇡

eff

27 1 48.73%
9 3 47.43%
5 9 43.95%
8 2 42.48%

One of the issues with the two output method is that
the two 4-bit PID numbers are correlated. The network
produces PID

e

and PID
p

that are inverses of each other.
Therefore the two PID numbers are correlated such that
PID

e

= 15�PID
p

which causes the diagonal line shown in
Figure 13.

Figure 13: PID frequency distribution with two out-
puts. The histogram shows the general correlation
between the two 4-bit PID numbers

The correlation is due to the low number of hidden nodes
used which means that the outputs are based on these few
hidden nodes. A example description of this problem is
shown in Figure 14. In the case where one hidden node is
used, the number of weights from the hidden to the output
layer is two. Therefore these outputs are each based on one



weight from the one hidden node. The correlation occurs
where both outputs just depend on this hidden node and
the weight that links them. A method of reducing the cor-
relation is by increasing the number of hidden nodes which
will increase the number weights that are connected from the
hidden to the output layer. Therefore the output neurons
will become more dependent on their independent weights
and not on the hidden neurons.

Figure 14: Neural network with one hidden node
with two outputs.

6.2.3 Comparison between One and Two Outputs
The results of the AliRoot simulations from the two out-

put networks produces lower pion e�ciencies than the one
output networks for all types of inputs tested as shown in
Figure 15. The two output networks produces better results
due to the need to determine two PID numbers. The one 4-
bit PID needs to bring the particle closer to its classification
while the other 4-bit PID number pushes the particle away
from misclassification.
The network that produces the lowest pion e�ciency is the
eight input networks which combines inputs from prepro-
cessed variables and time slices. This shows that simple
preprocessed variables improve the PID generator algorithm
but the time slices are still required to further improve the
PID generation algorithm.

Figure 15: Pion e�ciencies of the best networks for
each input type. The blue indicates the one out-
put approach and the red indicates the two output
approach.

In both cases the number of hidden nodes for the neural
network need to be chosen appropriately to ensure that the

pion e�ciencies are minimised, the PID frequency distribu-
tion uses the full range of PID numbers and reduces the
number of particles misidentified.

6.3 Overall Comparison
The results from the neural network showed improved re-

sults compared to the summation approach. These results
are based on the 2000 particles simulated with AliRoot. The
limitation of the sample size of the particles for the network
may a↵ect the e↵ectiveness of the training. The a↵ect of a
single tracklet potentially has a major a↵ect on the weight-
ings of the neural network. Since 80% of the particles are
used to train the network and 5500 tracklets are produced
from the 2000 particles, this means that around 4400 track-
lets are used for training. Therefore a single tracklet has
0.0227% of a↵ect on the output neural network. This sig-
nificant especially if the tracklet has the properties of an
electron if it is a pion or vice versa. Therefore depending on
the required accuracy for the neural network the amount of
tracklets needed can range from hundreds of thousands to
millions.
Other limitations include the learning parameters chosen.
Therefore in the experiments conducted the learning rate
was set to 0.5 with a momentum of 0.7. These parameters
chosen can be changed to produce better results by choosing
a slower learning rate and momentum and an increased num-
ber of generations. The time taken to train the data may
take weeks if a large sample of particles and generations are
used. The appropriate learning rate and momentum needs
to be chosen according to experimental tests with various
parameters.

7. CONCLUSIONS
The aim of this paper is to determine if Artificial Neural

Networks can be used as an e↵ective online PID generator
algorithm as an alternative to the summation approach. The
algorithms were tested on two thousand simulated particles
from AliRoot. The summation approach was found to have
drawbacks in its limitation in the PID frequency distribu-
tion and pion e�ciencies. The PID frequency distribution
of electrons and pions tend to be between 0 and 100 and the
frequencies for PID numbers overlapped significantly in this
area. The pion e�ciency for the summation approach was
57.7% which is very high and may thus be very di�cult for
the o✏ine particle identification algorithms to classify the
particles according to the PID numbers.
The ANN approach reduced these drawbacks of the summa-
tion approach by training the network with the backprop-
agation algorithm to determine an e↵ective neural network
to be used as a PID generator algorithm. Two types of
PID numbers were tested with two di↵erent neural network
approaches. The first approach created one output which
was converted into a single 8-bit PID number. The second
approach created two outputs which was converted to two
4-bit PID numbers. Each of the output approaches were
tested with four di↵erent input types of either preprocessed
variables, time bin information or both. The preprocessed
variables were based on the data features observed from the
average time bin ADC values for pions and electrons.
The two output neural network approach produced better
pion e�ciency results when compared to the one output neu-
ral network. Overall the neural network that produced the



best results was the network with eight inputs and two out-
puts. The eight inputs used both preprocessed variables and
time slices. This showed that preprocessed variables improve
the e↵ectiveness of the online algorithms but the time bin
information still provide important information that can im-
prove the online PID generator algorithms.
Overall the hypothesis that the PID generator algorithms
using ANNs produces better results than the summation
method is not rejected and a network with preprocessed vari-
ables and time slices information as inputs and two outputs
showed to have the most potential for an online PID gener-
ator algorithm.
Although the results were successful, we observed that the
limitation of two thousand particles may have a major af-
fect on the e↵ectiveness of the neural network in practical
applications and an increased number of particles used for
training is required at a reduced the learning rate and mo-
mentum.

7.1 Future Work
There are two major areas for potential future work. The

first area is with regards to the training of the neural net-
work and the second area to explore is the structure of the
neural network used as an online algorithm. As discussed
in the Section 6.3, the limitations in the number of particles
used as training data causes an issue in determine the accu-
racy of the neural network on the physical detectors. The
network needs to be trained on a larger number of particles
at a slower learning rate and momentum to ensure that the
backpropagation algorithm is able to find the global mini-
mum for the error. Other concepts such as regressors can be
applied to improve the learning process of the ANNs. The
structure of the neural network can also be improved upon
by reducing the computational complexity. The complexity
of the network can be reduced by removing the normalisa-
tion of the inputs, simplifying the activation function and
instead of the network producing signals between 0 and 1,
the network can directly output the PID numbers.
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