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ABSTRACT
At ALICE (A Large Ion Collider Experiment) the transition
radiation detector is used to identify subatomic particles. In
2017 ALICE will be upgraded and the current particle iden-
tification, based on artificial neural networks, will no longer
su�ce. This paper investigates the applicability of boosted
machine learning models rather than artificial neural net-
works for ALICE’s upgraded system. This is accomplished
by training a selection of boosting and artificial neural net-
work models on simulated data and comparing the particle
identification accuracy. The tests indicate that using Ad-
aBoost to boost artificial neural networks yields the best
performing boosting algorithm but that this performs worse
than an artificial neural network using a single hidden layer
and the sigmoid activation function. Consequently, the pa-
per concludes that an artificial neural network should be
used for particle identification at ALICE after the upgrade.

1. INTRODUCTION
A Large Ion Collider Experiment (ALICE) is the dedi-

cated heavy ion experiment at the Large Hadron Collider
(LHC). ALICE collides heavy ions - the nuclei of heavy par-
ticles - at nearly the speed of light [10]. In this paper we
consider how to identify the particles that are emitted from
these collisions, rather like subatomic shrapnel. ALICE has
been operating since 2010 and it is scheduled for an upgrade
in 2017 [8]. Most importantly, the upgrade will increase
the rate and momentum of particle collisions improving the
quality of results for current experimentation and allowing
for new experimentation [8]. The new system will also im-
pose new hardware requirements. As a result the current
particle identification framework needs to be redeveloped.

Currently, artificial neural networks (ANN) are used for
particle identification at ALICE [11]. A similar experiment,
MiniBooNE at Fermilabs, uses boosting - a technique of
combining many weak classifiers into a single strong classifier
- to identify particles [12]. After the upgrade the new hard-
ware at ALICE will require that the information used for
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particle identification gets compressed into six 8-bit values,
which is currently not necessary at either ALICE or Mini-
BooNE. Consequently, the systems now in use at ALICE
and MiniBooNE will not be compatible. This paper com-
pares the feasibility of boosting as a basis for the new particle
identification system at ALICE as compared to ANNs.

The construction of these 8-bit values, know as tracklet
IDs, is studied in a companion paper.

To compare boosting and ANNs, a variety of adaptive
boosting and feed-forward ANN algorithms are implemented.
Adaptive boosting and feed-forward ANNs are the base on
which the boosting and ANN class of algorithms is built.
This means that the algorithms implemented in this project
will give an indication of how well each class of algorithms
would perform at ALICE after the upgrade. The algorithms
are tested on simulated data generated by AliRoot - AL-
ICE’s software package.

This paper concludes - based on a wide range of exper-
iments using both boosting and ANNs with di↵erent pa-
rameters and datasets - that ANNs will be more adept than
boosting at identifying particles at ALICE after the upgrade.

The structure of the paper is as follows. Section 2 explains
the background information relevant to ALICE and the al-
gorithms that were implemented. Next, in section 3, we ex-
amine other research that relates to this project. Following
this, in section 4 the implementation details and framework
are explained. Lastly, section 5 reports and discusses the
results of the experiments.

2. BACKGROUND
This section provides an introduction to the ALICE ex-

periment and the algorithms used in this project. There is
an emphasis on the specification of the boosting algorithms
because they were implemented from scratch for this paper.

2.1 ALICE
The LHC is used to study conditions similar to those at

the very beginning of the universe. The ALICE experiment
at the LHC collides heavy ions to create quark-gluon plasma
- an extremely hot emulsion that existed for a millionth of
a second after the universe’s creation before cooling to form
the fundamental building blocks of matter [10]. Each colli-
sion emits thousands of particles such as electrons, protons,
pions, muons and kaons [11]. Due to the number of parti-
cles and the complexity of the classification task, machine
learning algorithms are needed.

Experiments at ALICE that require particle identification
have very high noise to signal ratios [8]. As a result many



collisions - in some cases more than the current system can
produce - are needed to obtain statistically significant data
[8]. This problem is going to be solved in 2017 when ALICE
is scheduled for an upgrade.

The information used for particle identification at ALICE
is recorded by the transition radiation detector (TRD) [11].
The TRD is a cylindrical detector that surrounds the point
of collisions and records the temporal charge emitted from
particles passing through it. The TRD cylinder is made
up of segments called stacks that consist of six layers each.
Every layer has a gas chamber which is used to record the
amount of charge emitted by particles passing through it.
Each layer is divided into 144 vertical columns and 12 or
16 horizontal rows [1]. A particle may traverse all six layers
of the TRD, depending on its angle of refraction. When a
particle traverses a layer of the TRD the amount of charge
it emits is recorded across four of the vertical columns and a
single row for 27 time bins. These charge values are known
as ADC values. The components of the TRD are shown in
figure 1. From the perspective of the particle identification
algorithm, the result of a particle traversing the TRD is
six matrices of ADC values, each containing the amount of
charge deposited by the particle across 27 time intervals in
four columns of the TRD layer. Each of the matrices is
known as a tracklet and combine to form the information
used to identify a particle track through the TRD.

Figure 1: This figure shows the breakdown of the TRD into its

components.

The current particle identification system at ALICE can
use all the data contained in a tracklet[11]. However, af-
ter the upgrade in 2017 the information contained in the
tracklet needs to be compressed into a single 32-bit word
of which 8-bits, known as the tracklet ID, will be used for
particle identification. This means that after the upgrade
the particle identification system will have to use the 8-bit
tracklet IDs from each of the six layers of the TRD to iden-
tify particles. As a result, the current system will no longer
work.

The best technique for converting the tracklet information
into a single 8-bit tracklet ID has not yet been established.
This computation of a robust tracklet ID is the focus of a
companion paper which looks into using a weighted summa-
tion of the ADC values.

This paper seeks to develop an accurate method to dis-
tinguish pions, short-lived particles made up of quarks and
anti-quarks, from electrons, negatively charged elementary
particles, using their deposited charge. In figure 2 the aver-
age deposited charge, ADC value, of electrons and pions is
shown for each time bin. At ALICE more than just these
two particles will need to be di↵erentiated but at high mo-

menta pions are similar to other particles so they are good
surrogates for testing [11].
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Figure 2: The plot on the left shows the average ADC value of

pions and electrons for each time bin. The histogram on the right

shows the frequency of the total ADC values for tracklets of each

particle type.

AliRoot is the ALICE computing framework written in
c++. It is used for data simulation, event reconstruction,
detector calibration, detector alignment, visualization, and
data analysis [11]. The data used in the project was simu-
lated using AliRoot.

2.2 Decision Trees
A classification decision tree is a supervised learning tech-

nique modelled as a binary tree where the leaves are labelled
with a class and the internal nodes represent a split of the
predictor space [4]. Each split of the tree defines a parti-
tioning of the training data. Picking a split is done using
the Gini Index, which is a measure inversely proportion-
ate to the percentage of a partition that belongs to a single
class[4]. The higher this percentage the better and therefore
the lower the Gini Index the better the split of the training
data.

The tree is constructed from the root and recursively picks
a partition of the predictor space which results in the largest
decrease in the Gini Index until a stopping criteria is met[4].

Each internal node of the tree represents a split of the
data, with respect to a predictor. As a result calculating
the mean Gini Index decrease that each predictor creates
across all of the nodes of the tree that it occurs in can be
used to determine the importance of the predictor.

2.3 ANNs
ANNs are a popular supervised learning technique loosely

based on the principles of a brain [6].
An ANN is a weighted directed graph made up of com-

puting nodes called perceptrons. Each perceptron outputs
on its outgoing edges the result of an activation function
evaluated on the weighted sum of incoming edges[7].

In this project feed forward ANNs are used. The topology
of the perceptrons in these networks has the perceptrons or-
ganised in successive layers[6]. Each layer is fully connected
to the previous layer and there are no lateral connections
between layers[6].

The learning process determines the weights of the edges.
The partial derivative of the error function with respect to
an edge weight is calculated and used to alter the weight of
the edge in such a way that the error is reduced. This is



known as gradient descent. The error is propagated back-
wards through the layers of the network. This is know as
back propagation [6].

The activation function considered in this project are the
following.
Sigmoid:

f(x) =
1

1 + e

�x

Fast-sigmoid:

f(x) =
1

1 + |x|
Tanh:

f(x) =
2

1 + e

�2x
� 1

Rectifier:

f(x) = max(0, x)

2.4 Boosting
Boosting falls into a family of machine learning algorithms

called ensemble algorithms. Ensemble algorithms construct
a strong learner from a set of weak learners - which only
need to be slightly more accurate than random [3].

Boosting algorithms maintain a weighting of the training
data that is used to specialise weak learners [3]. The weight
of more di�cult training examples is increased, encouraging
more weak learners to focus on them. The ease with which
other weak learners identify a training instance is used to
measure its di�culty [3].

Suppose we have T weak learners h
t

then the strong learner
h, performing binary classification, is defined as [3]:

h(x) = sign
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determines the impact that h
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has on the overall
classification.

A boosting algorithm is defined by how it calculates ↵

t

and w

t,i

. AdaBoost was the first implementation of boosting
that solved the practical problems of early attempts [3]. It
has become the template for the entire class of algorithms
and is still a very e↵ective classifier [9] [12] [13]. In this
project we consider AdaBoost, ✏-Boost and ✏-LogitBoost.

The general structure of boosting algorithms is as follows.
Set w

t,i

to 1
n

, where n is the number of training instances,
and train h1. Use h1 to determine which training instances
are hard to classify and increase their weights. Use the new
data weighting to train h2 and repeat this process for the
remaining T weak learners [3]. In the following subsections
the specifics of each of the boosting algorithms implemented
for this project are explained.

2.4.1 AdaBoost

In AdaBoost the weights are updated during the training
process by the following rule [3]:
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Z is a normalisation factor used to ensure that
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Naturally, ↵
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are inversely proportional. This makes
↵

t

a useful measure of how valid and novel the classification
of h

t

is.

2.4.2 ✏-Boost

✏-Boost requires picking a constant ✏ value which is in the
order of 0.01. For each weak learner ↵

t

= ✏. The training
weights are updated as follows [12]:

w

t+1,i = w

t,i

⇥
⇢

1 if h
t

(x
i

) = y

i

e

2.✏ if h
t

(x
i

) 6= y

i

2.4.3 ✏-LogitBoost

✏-LogitBoost also requires picking a constant ✏ value, which
is in the order of 0.01, and ↵

t

= ✏ for each weak learner. De-
fine, a partial classification h

0
t

as [12]:
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The partial classification is used to define the weight update
rule as follows [12]:

w
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e
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0
t(x)

1 + e

�yih
0
t(x)

where y

i

is the label of training instance i.

2.4.4 Evolutionary Weighting

The boosting algorithms’ weak learner weighting can be
found using an evolutionary search [5]. Any of the previously
mentioned algorithms’ training data weighting scheme can
be used in conjunction with evolutionary weighting of weak
learners.

There are many variations of evolutionary algorithms. The
key concepts are a fitness function, selection operators and
variation operators which drive a population of possible so-
lutions through multiple generations towards an optimal so-
lution [2]. Variation operators combine and mutate indi-
viduals of the population creating novelty and diversity [2].
The selection operators choose individuals using the fitness
function that are then used by the variation operators. The
variation operators construct a new population from these
individuals. If the selection and variation operators are well
chosen each population generation will have an increased fit-
ness [2]. This process is repeated until a stopping criteria is
met.

2.5 k-Fold Cross Validation
k-fold cross validation is a technique used to determine

how well a model will perform on unseen data. To achieve
this the data is divided into k segments and the model is
trained on k � 1 segments. The remaining segment is used
to test the model. This is done k times using di↵erent k� 1
segments each time. Then the model’s performance on the
unseen data segments is averaged over the k segments.



3. RELATED WORK
This section gives the reader a brief overview of other

studies that relate to this project.
Many of the classical particle identification techniques,

such as truncated mean and cluster counting, have been
used at ALICE [11]. Before implementing ANNs, likelihood
based methods were most successful. These techniques use
Bayesian statistics to determine the likelihood of a detec-
tor reading being produced by a certain particle to make
classifications [11].

As explained in the background section, this project aims
to identify particles by their deposited charge. Of the ANNs
currently being used at ALICE, the one that uses deposited
charge has eight input nodes, two hidden layers and an out-
put node for each type of particle being identified [11]. There
are 15 nodes in the first and five nodes in the second hidden
layer. Each tracklet is identified by the ANN and likelihood
based methods are used to combine the results into a sin-
gle classification. The tracklet’s data is divided into eight
segments and the total deposited charge of each segment is
used as an input for the ANN. It is shown that increasing
the number of segments improves the network’s accuracy
[11]. This is not surprising but it is concerning because the
construction of the tracklet ID in this project is the equiv-
alent of using a single segment. Using an ANN improved
the original likelihood based methods by three to four times
[11].

The current ANN is simple and the author makes no guar-
antees that it has the optimal configuration [11]. It seems
that it could quite easily be improved. The main issue with
the current particle identification implementation, which is
what this project deals with, is the fact that it isn’t compat-
ible with the new hardware specifications - requiring particle
identification be done on 8-bit tracklet IDs.

Another gap in the literature is that there is no analysis
of how well boosting performs at ALICE. A detailed anal-
ysis of the performance of boosting algorithms for particle
identification at MiniBooNE has been studied [12] [13]. At
MiniBooNE ✏-LogitBoost performed worse than Adaboost
and ✏-Boost [12]. The major di↵erence in performance be-
tween AdaBoost and ✏-Boost was AdaBoost’s ability to bet-
ter utilise fewer weak learners [12].

The comparative performance of boosting and ANNs at
MiniBooNE has also been studied [9]. At MiniBooNE boosted
decision trees had better performance than ANNs on all tests
and in some cases it improved classification accuracy by 80
percent [9]. Boosting also proved to be less sensitive to noise
in the data [13].

The improved accuracy was in part due to the fact that
boosted decision trees are better at utilising many explana-
tory variables[9]. At ALICE, after the upgrades, there will
be six or less explanatory variables so this gain may be lost.
Also the particles at MiniBooNE are not detected using a
transition radiation detector. Given these facts it is hard
to extrapolate the results of the MiniBooNE studies to AL-
ICE’s upgraded system .

One issue with AdaBoost is that its greedy weak learner
weighting algorithm outputs an ine�cient weighting [5]. To
solve this problem an evolutionary search of the weak learner
weight space can be used [5]. This technique improves the
accuracy of AdaBoost and can be used to prune learners
with low weighting - an indication that their prediction power
isn’t very strong[5]. Pruning these weak learners can im-

prove classification speed and accuracy [5].
Unfortunately, evolutionary weighting has only been tested

on AdaBoost [5]. This means we are unable to determine
what the e↵ect of evolutionary weighting is going to be on
✏-Boost and ✏-LogitBoost. Secondly, the experimentation is
done on a facial recognition problem rather than a particle
identification problem [5].

From the related work it is apparent that ANNs and boost-
ing have been successfully used for particle identification ex-
periments. However, these experiments are di↵erent from
the type of problem ALICE’s upgrade will present. There-
fore, this project aims to determine how well they will per-
form at ALICE with the new hardware requirements.

4. FRAMEWORK
The key goal of this project’s software was to provide a

robust and flexible testing framework that could be used for
experimentation in this project and others. The software
also had to be compatible with AliRoot should it at some
point become necessary to integrate the two frameworks.
The framework was developed using c++ and the Shark
machine learning library.

To make the software an e↵ective testing framework it was
developed so that parameters could easily be changed and re-
sults easily recorded. The parameters have clear names, are
easily set using function arguments and functions are stable
using all combinations of parameters. To get performance
information, models can be passed to the CrossValidation
class, which uses k-fold cross validation to determine how
well the model will perform on unseen data.

The hierarchy of the machine learning classes in the frame-
work is drawn in figure 3. Apart from these classes the
framework includes a data processing python script, an op-
timiser class that contains the evolutionary functionality and
a cross validation class for testing. The AbstractClassifier
class defines the interface and important functionality, such
as calculating error, that all models need. The boosting
models are templated so that any model adhering to the Ab-
stractClassifier interface can be boosted. This is convenient
because the same boosting implementations can be used for
many di↵erent weak learners. If in the future other models,
such as support vector machines, are added they can also be
boosted if they adhere to the AbstractClassifier interface. It
also makes it convenient to use the framework because all
the models adhere to a common interface. The current sys-
tem includes the NetworkClassifier and TreeClassifier class
which can be boosted.

Figure 3: An overview of the machine learning class hierarchy.

The machine learning framework uses data processing func-
tionality and models from the open-source Shark machine
learning library, which provides functionality for reading
CSV data. The data generated from the AliRoot simula-



tions can be processed into CSV data using the Python data
processing script developed with this project. Once Shark
has read the data it is e�ciently handled in batches and
can be passed to any of the Shark models. In this project
the Shark decision tree and feed-forward ANN are used. The
project was implemented in c++ to make it compatible with
AliRoot.

4.1 Implementation

4.1.1 Decision Trees

In the Shark library, decision trees are implemented in
the CARTClassifier class. The CARTTrainer class is used
to train these models. In this project the decision trees are
going to be boosted and therefore the framework needs to
be able to limit their size. The Shark decision tree trainer
did not provide this functionality so the CARTTrainer used
in this project has been altered so that the maximum depth
of a tree can be limited. It does this by using the original
shark implementation to grow the tree to full size and then
removes nodes, in the reverse order they were added, until
the tree is the correct size. The altered CARTTrainer and
CARTClassifier classes are encapsulated in the TreeClassi-
fier class.

4.1.2 Artificial Neural Networks

In the Shark library, feed forward ANNs are implemented
in the FFNet class. Associated with this class is an optimiser
class that trains the network. The NetworkClassifier class
wraps both of these classes into a single class adhering to
the AbstractClassifier interface. The interface was designed
so that all the underlying functionality of the Shark ANN
and optimiser could be accessed. To achieve this all the
parameters are set in the constructor. This allows the class
to adhere to the AbstractClassifier interface it inherits. Like
the FFNet class the type of neurons that the network uses
can be passed to the NetworkClassifier class as a template
argument.

4.1.3 Boosting Algorithms

AdaBoost, ✏-Boost and ✏-LogitBoost were implemented
from scratch in this project since Shark does not have any
boosting features. The AbstractBoosting class implements
the boosting algorithm. The AdaBoost, EpsilonBoost and
ELogitBoost classes which inherit from the AbstractBoost-
ing class contain the di↵erent weight updating functionality.

4.1.4 Evolutionary Weighting

Any boosting algorithm can be passed to the Optimiser
class and it will use an evolutionary algorithm to re-weight
the weak learners.

Each instance in the population is a vector of weights. The
algorithm uses uniform cross-over meaning that two weight
vectors are combined into a single o↵spring by randomly
selecting a weight for each weak learner from one of the par-
ents weights for that weak learner. Fitness proportionate
parent selection is used. This means that two parents are
sampled with respect to the individuals weights from the
population. Ten percent of the previous population survives
to the next generation and the rest is made up of the o↵-
spring with the best fitness. This is partial elitist survivor
selection. The size of the population, number of generations,
mutation probability and other parameters can be set using

the class constructor.

4.2 Data
CERN has restriction on access to real data at the LHC

so the data used in this project was generated using the
simulation tools in AliRoot.

The AliRoot macros used to generate this data are part
of the framework. The framework also includes a python
script which processes the raw data into csv files that the
machine learning classes can read.

The simulation macros generate data that isn’t very clean.
Some particles have erroneous detector values and not all
particles traverse each of the six layers of the TRD. The
python data script handles both of these cases. Particles
with erroneous detector values are detected and removed.
Particles that traverse fewer than six layers of the TRD have
the missing values inserted using the mean values of the
TRD layers that the particles did traverse.

We were unable to source the amount of data we would
have liked. The data used in this project contains 2413
particles of which 1218 were electrons and 1195 were pions.
Unfortunately, having a small amount of data limits the ac-
curacy of the results in this paper and makes it di�cult
to compare this framework with the actual implementation
being used at ALICE.

As mentioned previously, after ALICE’s upgrade the data
from each tracklet needs to be converted into a single 8-bit
tracklet ID. The current ANN system sums eight segments of
the ADC values and uses this as the input for the ANN [11].
So using the sum total of all ADC values truncated to 8-bits
is a natural construction for the tracklet ID. This was the
method used for generating tracklet IDs in this project. The
distribution of the resulting tracklet IDs can be seen in figure
2. Converting the data into tracklet IDs was implemented
in the python data processing script.

5. RESULTS
In this section the results of the experiments done in this

project are discussed. All the algorithms were run on Ama-
zon Web Service’s compute optimised machines with four
cores and 16GB of RAM. All of the experiments in this sec-
tion were done using 10-fold cross validation, meaning that
all of the results were recorded on unseen data.

5.1 Tracklet ID
The ability of the machine learning algorithms to classify

each particle depends on the quality of the information com-
municated in the tracklet ID. A full analysis of this is done
in the companion paper. This section aims to determine
if the Gini Index provides a useful weighting of the ADC
values. This was done with experiments that compare the
accuracy of decision trees and ANNs on two di↵erent track-
let ID constructions - namely, a weighted summation using
the mean Gini Index decrease as a weighting as well as an
un-weighted summation.

Determining the mean Gini Index decrease was done using
200 trees each selecting a split from a random selection of
five predictors. Preventing each tree from selecting a split
from the same set of predictors means that a more varied
set of predictors will be used for splits. This allows us to get
a better measurement of the mean Gini Index decrease that
each predictor results in [4].

In the left hand plot of figure 4 the mean Gini Index



decrease of the ADC data is plotted. The original two-
dimensional ADC value matrix of each tracklet was lin-
earised for these tests. Hence, in figure 4 the first 27 values
represent the first column of the tracklet data and the next
27 values represent the second column and so on. From
figure 4 we can tell that the two central columns are more
important than the outer ones. Surprisingly, the column left
of centre is in general more important than the column on
the right of centre. It is also apparent from figure 4 that the
latter time-bins have more descriptive power. This is not
surprising given the shape of the average ADC values’ for
pions and electrons, plotted in figure 2.

The normalised mean Gini Index decrease for each ADC
value was used as a weighting to construct a new data set of
particles using a weighted summation for the tracklet IDs.
This was done by normalising the mean Gini Index decrease
and then truncating the summed total to 8-bits. To deter-
mine if the weighted tracklet IDs performed better we fitted
various decision trees and ANNs to both data sets.

The results of fitting decision trees are in figure 4. De-
cision trees with maximum depth larger than five had a
better training accuracy on the weighted data. The gain
wasn’t large but it does indicate that the concept of using a
weighted summation to construct the tracklet IDs can im-
prove performance.

The data using the mean Gini Index decrease to construct
a weighted tracklet ID increased the training error of ANNs.
This is not surprising given that decision trees were used to
construct this weighting.

The results in this section prove that some of a tracklet’s
ADC values are more important than others. Additionally,
using a weighted summation can improve the descriptive
power of each tracklet ID. However, ANNs and decision trees
need di↵erent weight distributions to improve performance.
The mean Gini Index decrease weighting scheme works for
decision trees but not ANNs.
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Figure 4: Plots showing the results of the mean Gini Index

decrease weighting scheme.

5.2 Boosting

5.2.1 Weak Learners

Boosting algorithms are dependent on the performance of
the weak learners being boosted. Selecting the learners is a
balancing act. Boosting weak learners that are too complex
over fits the data and boosting weak learners that are too
simple results in a useless model. In this section of the paper
we compare the performance of boosted decision trees and

boosted ANNs. Boosted decision trees are a common con-
struction and have been shown to be powerful classifiers [12]
[9] [13]. ANNs have been shown to be accurate classifiers
at ALICE [11]. The experiments in this section determine
which weak learner, decision tree or ANN, and which con-
figuration of weak learner will perform best at ALICE after
the upgrade.

The performances of a decision tree and of a ANN are
plotted in figure 5, which shows the CV error of the two
models. The ANN has the same parameters as the ANNs
that are boosted. The exact parameters are specified below.
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Figure 5: Plots comparing the performance of di↵erent sized

decision trees and ANNs.

As we can see from figure 5 the optimal decision trees
obtain a CV error in the region of 0.25. The optimal tree
has a depth of nine. This means that restricting the tree’s
maximum depth to a number bigger than nine has no impact
on the decision tree that is built. The plateauing of the
decision tree’s CV error seen in figure 5 illustrates this point.

The major di↵erence between the individual ANNs and
decision trees is the CV error. The CV error of the ANNs
is much lower than that of the decision trees. Even sim-
ple networks with only two nodes and a single hidden layer
perform better than the optimal decision tree.

Boosting algorithms, using ANNs and decision trees as
weak learners, were implemented to determine which of the
two is a better weak learner. All of the boosted models
were trained using 200 weak learners. In boosting imple-
mentations the number of weak learners is usually in the
region of 3000 [12] [13]. However, the training data gener-
ated for this project only contains 2413 particles. It would
be unrealistic to have a similar number of weak learners and
training instances. For this reason only 200 weak learners
were boosted.

Experimentation was done with the maximum depth of
decision trees varied between one and nine. As we can see
from figure 5 increasing the maximum depth beyond nine
would make no di↵erence.

These experiments determined that deep decision trees
are required at ALICE even though shallow decision trees,
as can be seen from figure 5, are more accurate than ran-
dom. Theoretically, this means they should work but this is
not the case because boosting algorithms weight the training
data. The initial learners in the boosting process are trained
on a data set close to the original, as is the case in figure
5. As the algorithms change the data weights, more di�-
cult training examples are selected resulting in more com-
plex training sets for the weak learners. In some cases weak



learners are unable to infer valuable information from these
complex samples, reducing accuracy. This is the case when
the maximum tree depth is less than seven. An example
when trees have a maximum depth of five can be seen in
figure 6.

To determine if using more weak learners would solve this
problem, models using 1000 shallow trees with a depth of
less than five were trained but the same pattern of more
learners increasing the CV error continued.

The boosted ANNs use the sigmoid activation function
and 200 optimisation steps. Only a single hidden layer is
used to limit complexity. Too-complex ANNs will over fit
the data and increase training times. The size of the ANNs’
hidden layer was varied between two and 15.

A summary of the results of boosted ANNs is plotted in
figure 7. Unlike decision trees, all of the ANN sizes managed
to improve performance.

The di↵erence in shape of the curves of the boosted de-
cision trees in figure 6 compared to the boosted ANNs in
figure 7 is significant. It shows that boosted ANNs, in par-
ticular ones with simple hidden layers, learn more gradually
and continue to improve over a larger range. By 50 weak
learners the accuracy of boosted decision trees has plateaued
but ANNs are still improving at the 200th weak learner. The
fact that the ANNs learn more gradually indicates that they
will generalise better [4]. Also the fact that they continue
to improve accuracy for longer indicates that they will be
better suited to boosting a large number of weak learners,
which would happen the actual boosting implementation at
ALICE.

Another advantage of ANNs is that simple network topolo-
gies with less than three hidden nodes can achieve similar
performance to large trees with nine levels and more than a
1000 splits. This suggests that boosted ANNs will classify
faster than boosted decision trees.

The experimentation done in this section indicate that
simple ANNs with two or three hidden nodes and 200 opti-
misation steps will be the best performing weak learners at
ALICE after the upgrade.

5.2.2 Boosting Algorithms

Boosting algorithms are defined by how they weight the
training data and weak learners. Weighting specialises weak
learners and balances their predictions. This section of the
project aims to determine whether AdaBoost, ✏-Boost or ✏-
LogitBoost would be the best performing boosting algorithm
at ALICE. These algorithms were tested because they were
e↵ective at identifying particles at MiniBooNE [12] [13].

One of the advantages that boosting algorithms have is
that there are almost no parameters that need to be chosen.
For AdaBoost the user only needs to pick the number of
weak learners. For ✏-Boost and ✏-LogitBoost the ✏ param-
eter needs to be chosen as well. Compare this to an ANN
that can have very complex hidden layer topologies. In this
project we used 200 weak learners for reasons mentioned in
the previous section and ✏ was set to 0.01. This is a common
choice for the ✏ value [12].

From the experimentation it became clear ✏-Boost is equally
or more accurate than ✏-LogitBoost. For decision trees and
big ANNs ✏-LogitBoost has very similar performance to ✏-
Boost. However, ✏-Boost performs better on small networks.
This can be observed in figure 6 and 7.

Another disadvantage of ✏-LogitBoost is that it takes longer
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Figure 6: Plots showing the accuracy of di↵erent boosting algo-

rithms using various tree sizes.

to train because of its training data weight updating rule.
Each weak learner needs the partial classification of all the
previous learners on each training instance to update the
weights. AdaBoost and ✏-Boost only need the classification
of the single previous learner. For these reasons ✏-Boost and
AdaBoost would be a better choice than ✏-LogitBoost for
boosting at ALICE.

The next consideration is whether AdaBoost or ✏-Boost is
a better option. Both algorithms have very similar training
and classification times so accuracy is the determining factor
in choosing between them.

The key di↵erence in accuracy of AdaBoost and ✏-Boost
is that AdaBoost is more accurate when boosting simple
weak learners and ✏-Boost is more accurate when boosting
complex weak learners.

The better performance of AdaBoost on the simple weak
learners is the result of its weak learner weighting algo-
rithm. Unlike ✏-Boost and ✏-LogitBoost, which have a con-
stant weak learner weighting, AdaBoost weights weak learn-
ers inversely to their error. This means that weak learners
which struggle on complex samples and have large errors are
weighted less, preventing them from dramatically impacting
the classification. Simple weak learners are more likely to
have large errors.

It is possible that AdaBoost’s advantage when boosting
simple weak learners comes from its weighting of the training
data. It is hard to conclude that the data weighting has no
impact but in the next section we look at evolutionary weak
learner weighting and it becomes clear that the primary
factor is the weak learner weighting. Figure 8 shows that
weighting the weak learners in ✏-Boost and ✏-LogitBoost re-
sults in performance very similar to AdaBoost’s. This indi-
cates that the weak learner weighting is the key di↵erence.

✏-Boost’s improved accuracy compared to AdaBoost’s on
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Figure 7: Plots showing the accuracy of di↵erent boosting algo-

rithms using various network sizes.

complex weak learners is also the result of the algorithms’
weak learner weighting. In AdaBoost the initial complex
weak learners will have very low error rates and a large
weighting resulting in them dominating the weak learner
weighting and overall classification. In ✏-Boost the weight-
ing is fixed so the initial complex learners don’t control the
classification. This means that they can better utilise learn-
ers later in the boosting process.

These results are evident in figures 6 and 7. The per-
formance di↵erence resulting from AdaBoost’s weighting of
weak learners is most apparent in figure 6 when the maxi-
mum tree depth is seven. The figure shows that AdaBoost is
increasing the performance on a weak learner that ✏-Boost
and ✏-LogitBoost are unable to do.

In general, boosting algorithms with simple weak learners
generalise better [4]. In this section it has been shown that
AdaBoost is the best algorithm using simple weak learn-
ers because of its weak learner weighting. For this reason
AdaBoost is likely to be the most e↵ective algorithm for
boosting at ALICE after the upgrade.

5.2.3 Evolutionary Weighting

In the previous section the importance of weighting weak
learners became apparent. AdaBoost weights weak learn-
ers inversely to the weak learners’ error and ✏-Boost and
✏-LogitBoost use a constant weighting for the weak learners.
In this section we experiment with an evolutionary search
for the weak learner weights. The aim is to determine if the
weighting found by the evolutionary search improves accu-
racy and performance.

The experimentation was done using the evolutionary al-
gorithm described in the Framework section. The boosting
algorithms were trained with 50 decision trees of various
maximum depths. The evolutionary search was very slow so

only 50 weak learners were tested. In the previous sections it
became clear that most of the boosting algorithms’ decrease
of error happens within the first 50 learners so this should
nevertheless be instructive.

The mutation probability was 0.1, the population size was
500 and the algorithm was given 200 generations to find an
optimal solution. During experimentation it was determined
that the population converged within 150 generations so the
algorithm was given 200 generations to be safe. When test-
ing various sizes of boosting algorithms it was discovered
that having a population size 10 times the size of the num-
ber of weak learners balanced speed and accuracy. If the
population was too small relative to the number of weak
learners the population did not converge.

As we discussed in the previous section ✏-Boost and ✏-
LogitBoost were less e↵ective at boosting simple weak learn-
ers than AdaBoost because they do not weight weak learn-
ers. Therefore, using an evolutionary search of the weak
learner weight space should improve ✏-Boost and ✏-LogitBoost
when using simple weak learners. Indeed this was the case
in our experiments. Figure 8 shows the increase in accuracy
after evolutionary weighting on all three algorithms. The
figure shows that ✏-Boost and ✏-LogitBoost using decision
trees with maximum depth seven in particular benefit from
evolutionary weighting.

Weighting the weak learners in ✏-Boost and ✏-LogitBoost
improved performance and made them perform similarly to
AdaBoost on simple weak learners. As result it seemed nat-
ural to test what would happen if ✏-Boost and ✏-LogitBoost
were combined with AdaBoost’s weak learner weighting al-
gorithm. This was implemented and it did improve perfor-
mance but not as much as the evolutionary weighting. This
indicates that evolutionary weighting is more e↵ective than
AdaBoost’s weak learner weighting algorithm.

On larger trees the increase in performance from evolu-
tionary weighting is less. As can be seen in figure 8 evo-
lutionary weighting decreases the performance of AdaBoost
and makes almost no di↵erence to ✏-Boost and ✏-LogitBoost
when the maximum tree depth is nine.

According to the literature one of the advantages of evo-
lutionary weighting is that the new weighting gives a better
indication which of the weak learners are not providing novel
classifications than the normal weighting algorithm does [5].
This means that these weak learners, with low weighting,
can be removed. For smaller trees this was the case in this
project’s experiments as well. As we can see from figure
8 when the maximum tree depth is seven AdaBoost can
have about 40 weak learners pruned before the CV error of
the model drops below the original CV error. For ✏-Boost
and ✏-LogitBoost pruning 49 weak learners still has a better
performance than the previous unweighted boosted model.
This is because, as can be seen in figure 6 for ✏-Boost and ✏-
LogitBoost using trees with a maximum depth of seven with-
out any weighting, increasing the number of weak learners
reduces performance.

The experiments done in this section indicate that evolu-
tionary weighting can be used to improve accuracy and de-
termine which weak learners should be pruned. This was es-
pecially the case for ✏-Boost and ✏-LogitBoost using smaller
trees.

5.3 Artificial Neural Networks
ANNs are currently being used at ALICE and have been
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Figure 8: Plots showing the e↵ects on the accuracy of di↵erent

sized trees and boosting algorithms after evolutionary weighting

of the weak learners. The dashed lines indicated the CV error of

the respective models before evolutionary weighting.

shown to be strong classifiers [11]. Because of this ANNs are
a candidate model for the new particle identification frame-
work at ALICE. It is important to know the network topol-
ogy and activation function that result in the best particle
identification accuracy at ALICE.

For these experiments we used sigmoid, fast-sigmoid, tanh
and rectifier activation functions. The networks were trained
with two hidden layers that varied in size between one and
30. The current network has 17 nodes in the first layer and
five in the second layer so this seemed liked a reasonable
range. Each network was given 750 optimisation steps. In-
creasing this number began to over fit the models.
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Figure 9: These plots show the CV error of ANNs with di↵erent

activation functions and network topologies. The lower x-axis

indicates the size of the first hidden layer and the top x-axis

indicates the size of the second hidden layer.

The experiments showed that ANNs with small second
hidden layers performed better. The plots in figure 9 show
this. Each plot has an oscillating shape similar to a sin
function. The valley of each oscillation occurs when the
second hidden layer is small. The graph climbs until the
second layer’s size is reduced. This indicates that having a
second layer is over fitting the data.

As we move along the x-axis the size of the first hidden
layer increases and the valleys become deeper, especially in
the case of the tanh and fast-sigmoid activation functions.

It became clear from the experiments that the sigmoid ac-
tivation function was optimal. In figure 9 the performance of
the rectifier activation was excluded because its performance
was not nearly as good.

The best performing models have a CV error just above
0.15. All three activation functions graphed in figure 9 are
able to achieve this level of accuracy. However, the sigmoid
activation can do it with a less complex hidden layer. As one
can see from figure 9 the CV error of the sigmoid activation
function with 15 nodes in the first hidden layer is very similar
to the other activation functions with 30 hidden nodes in the
first hidden layer.

The general trend of the graphs also indicates that the
sigmoid activation function is optimal.

The experiments comparing fast-sigmoid and sigmoid in-
dicate that ANNs using fast-sigmoid are unable to learn the
data as well as those using a sigmoid activation function. In
figure 9 this is evident from fast-sigmoid’s shallower valleys
and lower peaks. The low peaks are a good thing because it
indicates that the model doesn’t over fit the data. However,
a model that doesn’t over fit is no good if it can’t predict.
This is the case with the fast sigmoid-activation function.
We can tell this from the low valleys in figure 9.

As with fast-sigmoid, using the tanh activation function
results in lower levels of accuracy than using the sigmoid
activation function. This is evident in figure 9 by the shal-
lower valleys of the tanh plot. However, unlike fast-sigmoid
which doesn’t over fit as badly as sigmoid on complex net-
work topologies, tanh does. The high peaks of the tanh
curve in figure 9 indicate this.

The experiments in this section have determined that a
single hidden layer is best. The fast-sigmoid activation func-
tion is better at not over fitting the data than the other acti-
vation functions but is less accurate. Tanh over fits the data
and is less accurate than using a sigmoid activation func-
tion. Therefore these experiments show that the sigmoid
activation function performs best.

5.4 Comparing Boosting and Artificial Neu-
ral Networks

Various people have shown that boosting and ANNs can
be used for particle identification [11][9][12][13]. This section
of the paper will combine the observations obtained from
the experimentation in the previous sections to determine if
boosting or ANNs are more suitable for particle identifica-
tion at ALICE after its upgrade.

In the previous sections we determined that using ANNs
as weak learners performed better than decision trees did.
We also found that boosting a simple ANN allowed the
boosting algorithms to learn more slowly and prevented over
fitting. Among the boosting algorithms AdaBoost performed
best on simple weak learners as a result of its weak learner
weighting scheme. Therefore, in this section AdaBoost with
a thousand ANNs each having two nodes in the hidden layer
was used to compare with an ANN.

In the ANN section we found that using the sigmoid acti-
vation function had better performance than a fast-sigmoid
activation function and didn’t over fit like a tanh activation
function did. We also found that ANNs with complex second
hidden layers over fitted the data. For this reason an ANN
with a single hidden layer and sigmoid activation function
was used to compare with the optimal boosting algorithm
AdaBoost.

The performance of both these optimal models is shown
in figure 10.

The most striking di↵erence between the two models is
the CV error. The individual ANN obtains error rates well
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Figure 10: Plots comparing the optimal boosting and ANN

algorithms.

below 0.15 which AdaBoost cannot do even with 1000 weak
learners. There is a single ANN with 140 nodes in the hid-
den layer that gets less than 0.11 accuracy. The fact that
this ANN does better than all the others with similar sized
hidden layers indicates that this may be an outlier and not
representative of how well it would perform on other data.
However, even if we remove this point the general trend of
the ANNs is achieving better CV errors than AdaBoost.

It appears that this type of ANN has achieved its optimal
level of accuracy. It is fair to say this because using more
than 150 nodes in the hidden layer is over fitting the data
and increasing the CV error. Even with 1000 weak learners
the trend of AdaBoost is down and it doesn’t appear to be
over fitting the data. So it could be that using more weak
learners would eventually result in AdaBoost having bet-
ter performance than the ANN. As mentioned in a previous
section having 1000 weak learners and only 2413 particles is
already unrealistic. Increasing the number of weak learners
further would make this an even more unfair comparison. So
it is safe to say that ANNs are more accurate for the type
of problem posed by ALICE’s upgrade.

A single ANN will also train and classify faster than Ad-
aBoost. The single ANN was given 750 optimisation steps
and AdaBoost used 200 optimisation steps per weak learner.
This means that training the AdaBoost model required over
100,000 optimisation steps. These optimisation steps would
have been faster but there are many more of them. Ad-
aBoost also has to update weights. These facts results in
the AdaBoost model training slower than the ANN. The
speed of classification is also important. In the AdaBoost
model each network had two hidden nodes meaning that
classifying the entire model would require using 2000 per-
ceptrons. The ANN has less than 200 perceptrons and will
therefore classify faster. Even these rough analyses of the
algorithms’ running times make it clear that AdaBoost is
computationally more costly.

The results in this section show that a single ANN is
more accurate and computationally e�cient than the op-
timal boosting algorithm AdaBoost for tackling the AL-
ICE particle identification problem posed by the planned
upgrade.

6. CONCLUSIONS
In 2017 ALICE is being upgraded [8]. The upgraded sys-

tem will allow for new experiments and also provide better
results for experiments with very high signal to noise ratios

[8]. An important aspect of the experiments is identifying
particles - in this paper electrons and pions - that traverse
the TRD. The new system imposes hardware limitations re-
quiring that each tracklet is identified by up to six 8-bit
tracklet IDs. As a result the current implementation is go-
ing to be redeveloped.

In this paper we have tested various boosting models and
ANNs on simulated data to determine which will be better
suited to the upgraded system at ALICE.

From the set of boosting algorithms tested it was found
that ✏-LogitBoost was the worst performing. ✏-Boost per-
formed better than Adaboost on complex weak learners but
worse than AdaBoost on simple weak learners. Since us-
ing simple weak learners generalises better AdaBoost was
determined to be the best performing boosting algorithm.

Using ANNs with two or three nodes as weak learners per-
formed better than decision trees. These small ANNs learnt
slower and continued to improve performance for longer than
the other weak learners tested.

As a result the best performing boosting algorithm was
determined to be AdaBoost using ANNs with two nodes in
the hidden layer.

ANNs using the sigmoid activation function learnt the
data better than the fast-sigmoid activation function and
over fitted the data less than the tanh activation function.
ANNs with a single hidden layer performed best. As a result
it was determined that ANNs with a single hidden layer us-
ing the sigmoid activation function was the best performing
ANN.

The best performing ANN - single hidden layer and sig-
moid activation function - was compared to the best per-
forming boosting algorithm - AdaBoost using ANNs with
two nodes in the hidden layer. The analysis shows that the
ANN was more accurate and computationally more e�cient
in terms of training and classifying.

Considered collectively, our experiments indicate that af-
ter the upgrade at ALICE ANNs should be used for particle
identification.

7. FUTURE WORK
This project concludes that ANNs are a better option

than boosting for particle identification at ALICE. However,
there are many variations of ANNs and a full investigation
of these is an important next step before implementing a
new particle identification framework at ALICE.

The accuracy of the entire model is also dependent on the
tracklet ID. This paper has shown that it is possible to con-
struct a more descriptive tracklet ID using a weighted sum.
Further research should be done to construct more predic-
tive tracklet IDs. Possibly evolutionary algorithms or ANNs
could be used to calculate more sophisticated weightings.
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